Text Classification
Transformers
PyTorch
Safetensors
xlm-roberta
genre
text-genre
Inference Endpoints
File size: 1,218 Bytes
a00b903
 
 
 
 
 
 
 
 
 
 
 
 
d31f5f4
 
 
 
 
 
 
 
 
a00b903
 
 
 
4297d20
 
 
 
 
 
 
 
 
a00b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
{
  "_name_or_path": "xlm-roberta-base",
  "architectures": [
    "XLMRobertaForSequenceClassification"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "id2label": {
    "0": "Other",
    "1": "Information/Explanation",
    "2": "News",
    "3": "Instruction",
    "4": "Opinion/Argumentation",
    "5": "Forum",
    "6": "Prose/Lyrical",
    "7": "Legal",
    "8": "Promotion"
  },
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "label2id": {
    "Other": 0,
    "Information/Explanation": 1,
    "News": 2,
    "Instruction": 3,
    "Opinion/Argumentation": 4,
    "Forum": 5,
    "Prose/Lyrical": 6,
    "Legal": 7,
    "Promotion": 8
  },
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "xlm-roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "output_past": true,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "problem_type": "single_label_classification",
  "torch_dtype": "float32",
  "transformers_version": "4.20.1",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 250002
}