Upload 21 files
Browse files- .gitattributes +1 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- latest +1 -0
- model.safetensors +3 -0
- modules.json +20 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
- trainer_state.json +1293 -0
- training_args.bin +3 -0
- zero_to_fp32.py +604 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "output_512_5_128_512_2024-09-14_00_34_39/checkpoint-1800",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.44.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step1800
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc2a3500e68193e6a4b729099f9948784494958e3b47d445d1dc5b77e292e573
|
3 |
+
size 2271064456
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b33a678e34c66e4da53e59cbd8dd47a71ae2d329209a412fb9c728f82d14ad5c
|
3 |
+
size 15920
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a4f0546d7d1507f688beed3b4cea3bf5aeab8be5a5873319727b234f4b99591
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5be152bbf9a1384690b2e53d0b9225070b15ff4253005a0a00d1d84fda18a657
|
3 |
+
size 15920
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de500c8dc8790507d03510ab8a988161ac6b457b77ed3e7875f16cfc409c5d0c
|
3 |
+
size 15920
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e77a3fa840d0c94f0fc7592dfad9acd21eef0226b2aa18b01e64db3d365c8fc
|
3 |
+
size 15920
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df35156e206ea5f264395ab1c05e517ee4ed00b5349f936e8262bbfc80a3a21c
|
3 |
+
size 15920
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afc5a40fb09a92400220ff44760e3a2bf7c1dedfc915d2b27adcef332442bbdc
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b50067d819f8d4ed5350b6579df557cb626480d0f9d23fe4ae343de4d1c3ba8
|
3 |
+
size 15920
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b74659c780d49afad7a7b9799868f75cbd3014fb6c34956e85a793028d38094a
|
3 |
+
size 17098251
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"sp_model_kwargs": {},
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.098106712564544,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01721170395869191,
|
13 |
+
"grad_norm": 0.29955029487609863,
|
14 |
+
"learning_rate": 2.0293089116901574e-06,
|
15 |
+
"loss": 0.6322,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.03442340791738382,
|
20 |
+
"grad_norm": 0.06169761344790459,
|
21 |
+
"learning_rate": 2.6401917645771237e-06,
|
22 |
+
"loss": 0.4697,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.05163511187607573,
|
27 |
+
"grad_norm": 0.051926977932453156,
|
28 |
+
"learning_rate": 2.9975353258495578e-06,
|
29 |
+
"loss": 0.5617,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.06884681583476764,
|
34 |
+
"grad_norm": 0.07096195966005325,
|
35 |
+
"learning_rate": 3.25107461746409e-06,
|
36 |
+
"loss": 0.4301,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.08605851979345955,
|
41 |
+
"grad_norm": 0.06899057328701019,
|
42 |
+
"learning_rate": 3.4477349704933476e-06,
|
43 |
+
"loss": 0.4905,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.10327022375215146,
|
48 |
+
"grad_norm": 0.08537387102842331,
|
49 |
+
"learning_rate": 3.6084181787365237e-06,
|
50 |
+
"loss": 0.4551,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.12048192771084337,
|
55 |
+
"grad_norm": 0.049780745059251785,
|
56 |
+
"learning_rate": 3.7442738955429737e-06,
|
57 |
+
"loss": 0.4058,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.13769363166953527,
|
62 |
+
"grad_norm": 0.04421038553118706,
|
63 |
+
"learning_rate": 3.861957470351056e-06,
|
64 |
+
"loss": 0.6748,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.1549053356282272,
|
69 |
+
"grad_norm": 1.9084473848342896,
|
70 |
+
"learning_rate": 3.965761740008958e-06,
|
71 |
+
"loss": 0.8719,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.1721170395869191,
|
76 |
+
"grad_norm": 0.08046019077301025,
|
77 |
+
"learning_rate": 4.058617823380315e-06,
|
78 |
+
"loss": 0.4635,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.18932874354561102,
|
83 |
+
"grad_norm": 0.21439455449581146,
|
84 |
+
"learning_rate": 4.142616368250685e-06,
|
85 |
+
"loss": 0.928,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.20654044750430292,
|
90 |
+
"grad_norm": 0.06055545434355736,
|
91 |
+
"learning_rate": 4.21930103162349e-06,
|
92 |
+
"loss": 0.3721,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.22375215146299485,
|
97 |
+
"grad_norm": 0.08670035004615784,
|
98 |
+
"learning_rate": 4.289844083644429e-06,
|
99 |
+
"loss": 0.7536,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.24096385542168675,
|
104 |
+
"grad_norm": 0.06118405610322952,
|
105 |
+
"learning_rate": 4.355156748429939e-06,
|
106 |
+
"loss": 0.9829,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.25817555938037867,
|
111 |
+
"grad_norm": 0.04853704199194908,
|
112 |
+
"learning_rate": 4.415961384652748e-06,
|
113 |
+
"loss": 0.4444,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.27538726333907054,
|
118 |
+
"grad_norm": 0.03537767753005028,
|
119 |
+
"learning_rate": 4.472840323238023e-06,
|
120 |
+
"loss": 0.5064,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.29259896729776247,
|
125 |
+
"grad_norm": 0.06154410541057587,
|
126 |
+
"learning_rate": 4.52626987322263e-06,
|
127 |
+
"loss": 0.5456,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.3098106712564544,
|
132 |
+
"grad_norm": 0.052560485899448395,
|
133 |
+
"learning_rate": 4.576644592895925e-06,
|
134 |
+
"loss": 0.5106,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.3270223752151463,
|
139 |
+
"grad_norm": 0.04913010448217392,
|
140 |
+
"learning_rate": 4.6242949899596115e-06,
|
141 |
+
"loss": 0.4026,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.3442340791738382,
|
146 |
+
"grad_norm": 0.07974158972501755,
|
147 |
+
"learning_rate": 4.66950067626728e-06,
|
148 |
+
"loss": 0.4828,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.3614457831325301,
|
153 |
+
"grad_norm": 0.03538183122873306,
|
154 |
+
"learning_rate": 4.712500309702374e-06,
|
155 |
+
"loss": 0.3549,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.37865748709122204,
|
160 |
+
"grad_norm": 0.21638496220111847,
|
161 |
+
"learning_rate": 4.753499221137652e-06,
|
162 |
+
"loss": 0.4912,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.3958691910499139,
|
167 |
+
"grad_norm": 0.03895362466573715,
|
168 |
+
"learning_rate": 4.792675344617211e-06,
|
169 |
+
"loss": 0.3846,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.41308089500860584,
|
174 |
+
"grad_norm": 0.03565879911184311,
|
175 |
+
"learning_rate": 4.830183884510456e-06,
|
176 |
+
"loss": 0.8434,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.43029259896729777,
|
181 |
+
"grad_norm": 0.03526683151721954,
|
182 |
+
"learning_rate": 4.866161029296539e-06,
|
183 |
+
"loss": 0.3603,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.4475043029259897,
|
188 |
+
"grad_norm": 0.064102903008461,
|
189 |
+
"learning_rate": 4.900726936531396e-06,
|
190 |
+
"loss": 0.5178,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.46471600688468157,
|
195 |
+
"grad_norm": 0.06982860714197159,
|
196 |
+
"learning_rate": 4.9339881541683585e-06,
|
197 |
+
"loss": 0.3712,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.4819277108433735,
|
202 |
+
"grad_norm": 0.0654272809624672,
|
203 |
+
"learning_rate": 4.966039601316906e-06,
|
204 |
+
"loss": 0.9119,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.4991394148020654,
|
209 |
+
"grad_norm": 0.04955059662461281,
|
210 |
+
"learning_rate": 4.9969662012643525e-06,
|
211 |
+
"loss": 0.3874,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.5163511187607573,
|
216 |
+
"grad_norm": 1.0234352350234985,
|
217 |
+
"learning_rate": 4.984697781178272e-06,
|
218 |
+
"loss": 0.8952,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.5335628227194492,
|
223 |
+
"grad_norm": 0.03769606724381447,
|
224 |
+
"learning_rate": 4.96557000765111e-06,
|
225 |
+
"loss": 0.3347,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.5507745266781411,
|
230 |
+
"grad_norm": 0.11739111691713333,
|
231 |
+
"learning_rate": 4.946442234123948e-06,
|
232 |
+
"loss": 0.3677,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.5679862306368331,
|
237 |
+
"grad_norm": 0.04959660395979881,
|
238 |
+
"learning_rate": 4.927314460596787e-06,
|
239 |
+
"loss": 1.1762,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.5851979345955249,
|
244 |
+
"grad_norm": 0.1042531356215477,
|
245 |
+
"learning_rate": 4.908186687069626e-06,
|
246 |
+
"loss": 0.4252,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.6024096385542169,
|
251 |
+
"grad_norm": 0.05064910277724266,
|
252 |
+
"learning_rate": 4.889058913542464e-06,
|
253 |
+
"loss": 0.3836,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.6196213425129088,
|
258 |
+
"grad_norm": 0.0689607635140419,
|
259 |
+
"learning_rate": 4.869931140015303e-06,
|
260 |
+
"loss": 0.7539,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.6368330464716007,
|
265 |
+
"grad_norm": 0.23462702333927155,
|
266 |
+
"learning_rate": 4.850803366488141e-06,
|
267 |
+
"loss": 0.8236,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.6540447504302926,
|
272 |
+
"grad_norm": 0.11018137633800507,
|
273 |
+
"learning_rate": 4.83167559296098e-06,
|
274 |
+
"loss": 0.4839,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.6712564543889845,
|
279 |
+
"grad_norm": 0.0751522108912468,
|
280 |
+
"learning_rate": 4.812547819433818e-06,
|
281 |
+
"loss": 0.5791,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.6884681583476764,
|
286 |
+
"grad_norm": 0.17227555811405182,
|
287 |
+
"learning_rate": 4.793420045906657e-06,
|
288 |
+
"loss": 0.7993,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.7056798623063684,
|
293 |
+
"grad_norm": 0.0664035975933075,
|
294 |
+
"learning_rate": 4.7742922723794954e-06,
|
295 |
+
"loss": 0.387,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.7228915662650602,
|
300 |
+
"grad_norm": 0.04762504622340202,
|
301 |
+
"learning_rate": 4.755164498852334e-06,
|
302 |
+
"loss": 0.5436,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.7401032702237521,
|
307 |
+
"grad_norm": 0.03658389300107956,
|
308 |
+
"learning_rate": 4.736036725325173e-06,
|
309 |
+
"loss": 0.6715,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.7573149741824441,
|
314 |
+
"grad_norm": 0.03955502808094025,
|
315 |
+
"learning_rate": 4.716908951798011e-06,
|
316 |
+
"loss": 0.4902,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.774526678141136,
|
321 |
+
"grad_norm": 0.05926811322569847,
|
322 |
+
"learning_rate": 4.69778117827085e-06,
|
323 |
+
"loss": 0.7329,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.7917383820998278,
|
328 |
+
"grad_norm": 0.26404136419296265,
|
329 |
+
"learning_rate": 4.678653404743688e-06,
|
330 |
+
"loss": 0.5748,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.8089500860585198,
|
335 |
+
"grad_norm": 0.07195431739091873,
|
336 |
+
"learning_rate": 4.6595256312165265e-06,
|
337 |
+
"loss": 0.5501,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.8261617900172117,
|
342 |
+
"grad_norm": 0.0486939400434494,
|
343 |
+
"learning_rate": 4.640397857689365e-06,
|
344 |
+
"loss": 0.4527,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.8433734939759037,
|
349 |
+
"grad_norm": 0.05488497018814087,
|
350 |
+
"learning_rate": 4.621270084162204e-06,
|
351 |
+
"loss": 0.8637,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.8605851979345955,
|
356 |
+
"grad_norm": 0.045418575406074524,
|
357 |
+
"learning_rate": 4.6021423106350425e-06,
|
358 |
+
"loss": 0.437,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.8777969018932874,
|
363 |
+
"grad_norm": 0.04055708646774292,
|
364 |
+
"learning_rate": 4.583014537107881e-06,
|
365 |
+
"loss": 0.6466,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.8950086058519794,
|
370 |
+
"grad_norm": 0.03856475651264191,
|
371 |
+
"learning_rate": 4.563886763580719e-06,
|
372 |
+
"loss": 0.669,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.9122203098106713,
|
377 |
+
"grad_norm": 0.035741958767175674,
|
378 |
+
"learning_rate": 4.5447589900535585e-06,
|
379 |
+
"loss": 0.3615,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.9294320137693631,
|
384 |
+
"grad_norm": 0.04278489947319031,
|
385 |
+
"learning_rate": 4.525631216526396e-06,
|
386 |
+
"loss": 0.3849,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.9466437177280551,
|
391 |
+
"grad_norm": 0.031775712966918945,
|
392 |
+
"learning_rate": 4.506503442999236e-06,
|
393 |
+
"loss": 0.6446,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.963855421686747,
|
398 |
+
"grad_norm": 0.19989252090454102,
|
399 |
+
"learning_rate": 4.487375669472074e-06,
|
400 |
+
"loss": 0.6668,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.9810671256454389,
|
405 |
+
"grad_norm": 0.04056662693619728,
|
406 |
+
"learning_rate": 4.468247895944912e-06,
|
407 |
+
"loss": 0.4243,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.9982788296041308,
|
412 |
+
"grad_norm": 0.06392610818147659,
|
413 |
+
"learning_rate": 4.449120122417751e-06,
|
414 |
+
"loss": 0.3431,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 1.0154905335628228,
|
419 |
+
"grad_norm": 0.03935154527425766,
|
420 |
+
"learning_rate": 4.42999234889059e-06,
|
421 |
+
"loss": 0.5167,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.0327022375215147,
|
426 |
+
"grad_norm": 0.05566889047622681,
|
427 |
+
"learning_rate": 4.410864575363428e-06,
|
428 |
+
"loss": 0.4372,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.0499139414802066,
|
433 |
+
"grad_norm": 0.07127536088228226,
|
434 |
+
"learning_rate": 4.391736801836267e-06,
|
435 |
+
"loss": 1.4152,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 1.0671256454388984,
|
440 |
+
"grad_norm": 0.04618392139673233,
|
441 |
+
"learning_rate": 4.372609028309105e-06,
|
442 |
+
"loss": 0.601,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.0843373493975903,
|
447 |
+
"grad_norm": 0.04588570445775986,
|
448 |
+
"learning_rate": 4.3534812547819434e-06,
|
449 |
+
"loss": 0.4723,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.1015490533562822,
|
454 |
+
"grad_norm": 0.03991321101784706,
|
455 |
+
"learning_rate": 4.334353481254782e-06,
|
456 |
+
"loss": 0.4807,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 1.1187607573149743,
|
461 |
+
"grad_norm": 0.2501582205295563,
|
462 |
+
"learning_rate": 4.315225707727621e-06,
|
463 |
+
"loss": 0.8098,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.1359724612736661,
|
468 |
+
"grad_norm": 0.042163778096437454,
|
469 |
+
"learning_rate": 4.296097934200459e-06,
|
470 |
+
"loss": 0.4158,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.153184165232358,
|
475 |
+
"grad_norm": 0.04054609313607216,
|
476 |
+
"learning_rate": 4.276970160673298e-06,
|
477 |
+
"loss": 0.3728,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.1703958691910499,
|
482 |
+
"grad_norm": 0.0925000011920929,
|
483 |
+
"learning_rate": 4.257842387146137e-06,
|
484 |
+
"loss": 0.4251,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 1.1876075731497417,
|
489 |
+
"grad_norm": 0.06017041206359863,
|
490 |
+
"learning_rate": 4.2387146136189745e-06,
|
491 |
+
"loss": 0.4782,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 1.2048192771084336,
|
496 |
+
"grad_norm": 0.040517594665288925,
|
497 |
+
"learning_rate": 4.219586840091814e-06,
|
498 |
+
"loss": 0.4354,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 1.2220309810671257,
|
503 |
+
"grad_norm": 0.04731125384569168,
|
504 |
+
"learning_rate": 4.200459066564652e-06,
|
505 |
+
"loss": 0.4969,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.2392426850258176,
|
510 |
+
"grad_norm": 0.050880610942840576,
|
511 |
+
"learning_rate": 4.1813312930374905e-06,
|
512 |
+
"loss": 0.492,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.2564543889845095,
|
517 |
+
"grad_norm": 0.04548948258161545,
|
518 |
+
"learning_rate": 4.162203519510329e-06,
|
519 |
+
"loss": 0.3914,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.2736660929432013,
|
524 |
+
"grad_norm": 0.03825736418366432,
|
525 |
+
"learning_rate": 4.143075745983168e-06,
|
526 |
+
"loss": 0.3921,
|
527 |
+
"step": 740
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.2908777969018934,
|
531 |
+
"grad_norm": 0.046227287501096725,
|
532 |
+
"learning_rate": 4.1239479724560065e-06,
|
533 |
+
"loss": 0.4632,
|
534 |
+
"step": 750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.3080895008605853,
|
538 |
+
"grad_norm": 0.04002716392278671,
|
539 |
+
"learning_rate": 4.104820198928845e-06,
|
540 |
+
"loss": 0.7436,
|
541 |
+
"step": 760
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.3253012048192772,
|
545 |
+
"grad_norm": 0.04381329566240311,
|
546 |
+
"learning_rate": 4.085692425401683e-06,
|
547 |
+
"loss": 0.5388,
|
548 |
+
"step": 770
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.342512908777969,
|
552 |
+
"grad_norm": 0.09227538853883743,
|
553 |
+
"learning_rate": 4.0665646518745225e-06,
|
554 |
+
"loss": 0.7008,
|
555 |
+
"step": 780
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.359724612736661,
|
559 |
+
"grad_norm": 0.0453125424683094,
|
560 |
+
"learning_rate": 4.04743687834736e-06,
|
561 |
+
"loss": 0.4813,
|
562 |
+
"step": 790
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.3769363166953528,
|
566 |
+
"grad_norm": 0.20484060049057007,
|
567 |
+
"learning_rate": 4.0283091048202e-06,
|
568 |
+
"loss": 0.6594,
|
569 |
+
"step": 800
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.3941480206540446,
|
573 |
+
"grad_norm": 0.05485668033361435,
|
574 |
+
"learning_rate": 4.009181331293038e-06,
|
575 |
+
"loss": 0.6538,
|
576 |
+
"step": 810
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.4113597246127367,
|
580 |
+
"grad_norm": 0.04452645406126976,
|
581 |
+
"learning_rate": 3.990053557765876e-06,
|
582 |
+
"loss": 0.3713,
|
583 |
+
"step": 820
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.4285714285714286,
|
587 |
+
"grad_norm": 0.03632510080933571,
|
588 |
+
"learning_rate": 3.970925784238715e-06,
|
589 |
+
"loss": 0.3395,
|
590 |
+
"step": 830
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.4457831325301205,
|
594 |
+
"grad_norm": 0.0884113535284996,
|
595 |
+
"learning_rate": 3.951798010711554e-06,
|
596 |
+
"loss": 0.3602,
|
597 |
+
"step": 840
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.4629948364888123,
|
601 |
+
"grad_norm": 0.1275469958782196,
|
602 |
+
"learning_rate": 3.932670237184392e-06,
|
603 |
+
"loss": 0.4533,
|
604 |
+
"step": 850
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.4802065404475044,
|
608 |
+
"grad_norm": 0.03843805938959122,
|
609 |
+
"learning_rate": 3.913542463657231e-06,
|
610 |
+
"loss": 0.7519,
|
611 |
+
"step": 860
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 1.4974182444061963,
|
615 |
+
"grad_norm": 0.03635178506374359,
|
616 |
+
"learning_rate": 3.89441469013007e-06,
|
617 |
+
"loss": 0.388,
|
618 |
+
"step": 870
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 1.5146299483648882,
|
622 |
+
"grad_norm": 0.039031002670526505,
|
623 |
+
"learning_rate": 3.875286916602907e-06,
|
624 |
+
"loss": 0.4425,
|
625 |
+
"step": 880
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 1.53184165232358,
|
629 |
+
"grad_norm": 0.04110798239707947,
|
630 |
+
"learning_rate": 3.856159143075746e-06,
|
631 |
+
"loss": 0.4095,
|
632 |
+
"step": 890
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 1.549053356282272,
|
636 |
+
"grad_norm": 0.04002736508846283,
|
637 |
+
"learning_rate": 3.837031369548585e-06,
|
638 |
+
"loss": 0.6104,
|
639 |
+
"step": 900
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.5662650602409638,
|
643 |
+
"grad_norm": 0.03314425051212311,
|
644 |
+
"learning_rate": 3.817903596021423e-06,
|
645 |
+
"loss": 0.5594,
|
646 |
+
"step": 910
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 1.5834767641996557,
|
650 |
+
"grad_norm": 0.03947990760207176,
|
651 |
+
"learning_rate": 3.798775822494262e-06,
|
652 |
+
"loss": 0.4931,
|
653 |
+
"step": 920
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.6006884681583475,
|
657 |
+
"grad_norm": 0.05939627066254616,
|
658 |
+
"learning_rate": 3.7796480489671007e-06,
|
659 |
+
"loss": 0.5127,
|
660 |
+
"step": 930
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.6179001721170396,
|
664 |
+
"grad_norm": 0.03439631685614586,
|
665 |
+
"learning_rate": 3.760520275439939e-06,
|
666 |
+
"loss": 0.4139,
|
667 |
+
"step": 940
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.6351118760757315,
|
671 |
+
"grad_norm": 0.06566853076219559,
|
672 |
+
"learning_rate": 3.7413925019127776e-06,
|
673 |
+
"loss": 0.6641,
|
674 |
+
"step": 950
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.6523235800344234,
|
678 |
+
"grad_norm": 0.06731946766376495,
|
679 |
+
"learning_rate": 3.7222647283856163e-06,
|
680 |
+
"loss": 0.6865,
|
681 |
+
"step": 960
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.6695352839931155,
|
685 |
+
"grad_norm": 0.03529343381524086,
|
686 |
+
"learning_rate": 3.703136954858455e-06,
|
687 |
+
"loss": 0.6395,
|
688 |
+
"step": 970
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.6867469879518073,
|
692 |
+
"grad_norm": 0.09028229117393494,
|
693 |
+
"learning_rate": 3.684009181331293e-06,
|
694 |
+
"loss": 0.774,
|
695 |
+
"step": 980
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.7039586919104992,
|
699 |
+
"grad_norm": 0.04828124865889549,
|
700 |
+
"learning_rate": 3.664881407804132e-06,
|
701 |
+
"loss": 0.4953,
|
702 |
+
"step": 990
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.721170395869191,
|
706 |
+
"grad_norm": 0.050330750644207,
|
707 |
+
"learning_rate": 3.6457536342769705e-06,
|
708 |
+
"loss": 0.6435,
|
709 |
+
"step": 1000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.738382099827883,
|
713 |
+
"grad_norm": 0.03781217709183693,
|
714 |
+
"learning_rate": 3.6266258607498087e-06,
|
715 |
+
"loss": 0.4538,
|
716 |
+
"step": 1010
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.7555938037865748,
|
720 |
+
"grad_norm": 0.053586967289447784,
|
721 |
+
"learning_rate": 3.607498087222648e-06,
|
722 |
+
"loss": 0.384,
|
723 |
+
"step": 1020
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.7728055077452667,
|
727 |
+
"grad_norm": 0.04280597344040871,
|
728 |
+
"learning_rate": 3.588370313695486e-06,
|
729 |
+
"loss": 0.385,
|
730 |
+
"step": 1030
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.7900172117039586,
|
734 |
+
"grad_norm": 0.05530484393239021,
|
735 |
+
"learning_rate": 3.5692425401683243e-06,
|
736 |
+
"loss": 0.732,
|
737 |
+
"step": 1040
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.8072289156626506,
|
741 |
+
"grad_norm": 0.05707624554634094,
|
742 |
+
"learning_rate": 3.5501147666411634e-06,
|
743 |
+
"loss": 0.4075,
|
744 |
+
"step": 1050
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.8244406196213425,
|
748 |
+
"grad_norm": 0.07795403897762299,
|
749 |
+
"learning_rate": 3.5309869931140016e-06,
|
750 |
+
"loss": 1.0486,
|
751 |
+
"step": 1060
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.8416523235800344,
|
755 |
+
"grad_norm": 0.08253274112939835,
|
756 |
+
"learning_rate": 3.5118592195868407e-06,
|
757 |
+
"loss": 0.7014,
|
758 |
+
"step": 1070
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 1.8588640275387265,
|
762 |
+
"grad_norm": 0.037665221840143204,
|
763 |
+
"learning_rate": 3.492731446059679e-06,
|
764 |
+
"loss": 0.5129,
|
765 |
+
"step": 1080
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.8760757314974184,
|
769 |
+
"grad_norm": 0.08074070513248444,
|
770 |
+
"learning_rate": 3.473603672532517e-06,
|
771 |
+
"loss": 0.6965,
|
772 |
+
"step": 1090
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 1.8932874354561102,
|
776 |
+
"grad_norm": 0.053863946348428726,
|
777 |
+
"learning_rate": 3.4544758990053563e-06,
|
778 |
+
"loss": 0.3608,
|
779 |
+
"step": 1100
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 1.910499139414802,
|
783 |
+
"grad_norm": 0.03980562463402748,
|
784 |
+
"learning_rate": 3.4353481254781945e-06,
|
785 |
+
"loss": 0.3408,
|
786 |
+
"step": 1110
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 1.927710843373494,
|
790 |
+
"grad_norm": 0.03091476857662201,
|
791 |
+
"learning_rate": 3.4162203519510336e-06,
|
792 |
+
"loss": 0.4147,
|
793 |
+
"step": 1120
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 1.9449225473321858,
|
797 |
+
"grad_norm": 0.05423520505428314,
|
798 |
+
"learning_rate": 3.399005355776588e-06,
|
799 |
+
"loss": 0.501,
|
800 |
+
"step": 1130
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 1.9621342512908777,
|
804 |
+
"grad_norm": 0.056222882121801376,
|
805 |
+
"learning_rate": 3.379877582249426e-06,
|
806 |
+
"loss": 0.6646,
|
807 |
+
"step": 1140
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.9793459552495696,
|
811 |
+
"grad_norm": 0.04780727997422218,
|
812 |
+
"learning_rate": 3.360749808722265e-06,
|
813 |
+
"loss": 0.4433,
|
814 |
+
"step": 1150
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 1.9965576592082617,
|
818 |
+
"grad_norm": 0.0465485118329525,
|
819 |
+
"learning_rate": 3.3416220351951034e-06,
|
820 |
+
"loss": 0.4117,
|
821 |
+
"step": 1160
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 2.0137693631669533,
|
825 |
+
"grad_norm": 0.038410015404224396,
|
826 |
+
"learning_rate": 3.3224942616679424e-06,
|
827 |
+
"loss": 0.9719,
|
828 |
+
"step": 1170
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 2.0309810671256456,
|
832 |
+
"grad_norm": 0.03839205205440521,
|
833 |
+
"learning_rate": 3.3033664881407807e-06,
|
834 |
+
"loss": 0.5383,
|
835 |
+
"step": 1180
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 2.0481927710843375,
|
839 |
+
"grad_norm": 0.05250284820795059,
|
840 |
+
"learning_rate": 3.284238714613619e-06,
|
841 |
+
"loss": 0.5573,
|
842 |
+
"step": 1190
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 2.0654044750430294,
|
846 |
+
"grad_norm": 0.05850391089916229,
|
847 |
+
"learning_rate": 3.265110941086458e-06,
|
848 |
+
"loss": 0.3652,
|
849 |
+
"step": 1200
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 2.0826161790017212,
|
853 |
+
"grad_norm": 0.03551226481795311,
|
854 |
+
"learning_rate": 3.2459831675592962e-06,
|
855 |
+
"loss": 1.1687,
|
856 |
+
"step": 1210
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 2.099827882960413,
|
860 |
+
"grad_norm": 0.035683631896972656,
|
861 |
+
"learning_rate": 3.226855394032135e-06,
|
862 |
+
"loss": 0.3377,
|
863 |
+
"step": 1220
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 2.117039586919105,
|
867 |
+
"grad_norm": 0.05406322330236435,
|
868 |
+
"learning_rate": 3.2077276205049736e-06,
|
869 |
+
"loss": 0.4614,
|
870 |
+
"step": 1230
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 2.134251290877797,
|
874 |
+
"grad_norm": 0.030787965282797813,
|
875 |
+
"learning_rate": 3.188599846977812e-06,
|
876 |
+
"loss": 0.3771,
|
877 |
+
"step": 1240
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 2.1514629948364887,
|
881 |
+
"grad_norm": 0.04496818408370018,
|
882 |
+
"learning_rate": 3.169472073450651e-06,
|
883 |
+
"loss": 0.4846,
|
884 |
+
"step": 1250
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 2.1686746987951806,
|
888 |
+
"grad_norm": 0.03633632883429527,
|
889 |
+
"learning_rate": 3.150344299923489e-06,
|
890 |
+
"loss": 0.3549,
|
891 |
+
"step": 1260
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 2.1858864027538725,
|
895 |
+
"grad_norm": 0.033117033541202545,
|
896 |
+
"learning_rate": 3.1312165263963278e-06,
|
897 |
+
"loss": 0.4224,
|
898 |
+
"step": 1270
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 2.2030981067125643,
|
902 |
+
"grad_norm": 0.04940853640437126,
|
903 |
+
"learning_rate": 3.1120887528691664e-06,
|
904 |
+
"loss": 0.6976,
|
905 |
+
"step": 1280
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 2.2203098106712567,
|
909 |
+
"grad_norm": 0.03474991396069527,
|
910 |
+
"learning_rate": 3.092960979342005e-06,
|
911 |
+
"loss": 0.5837,
|
912 |
+
"step": 1290
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 2.2375215146299485,
|
916 |
+
"grad_norm": 0.08616980165243149,
|
917 |
+
"learning_rate": 3.0738332058148433e-06,
|
918 |
+
"loss": 0.5885,
|
919 |
+
"step": 1300
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 2.2547332185886404,
|
923 |
+
"grad_norm": 0.04921899363398552,
|
924 |
+
"learning_rate": 3.054705432287682e-06,
|
925 |
+
"loss": 0.4007,
|
926 |
+
"step": 1310
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 2.2719449225473323,
|
930 |
+
"grad_norm": 0.033128101378679276,
|
931 |
+
"learning_rate": 3.0355776587605207e-06,
|
932 |
+
"loss": 0.3948,
|
933 |
+
"step": 1320
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 2.289156626506024,
|
937 |
+
"grad_norm": 0.0420563630759716,
|
938 |
+
"learning_rate": 3.016449885233359e-06,
|
939 |
+
"loss": 0.6675,
|
940 |
+
"step": 1330
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 2.306368330464716,
|
944 |
+
"grad_norm": 0.04620426893234253,
|
945 |
+
"learning_rate": 2.997322111706198e-06,
|
946 |
+
"loss": 0.3454,
|
947 |
+
"step": 1340
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 2.323580034423408,
|
951 |
+
"grad_norm": 0.031115278601646423,
|
952 |
+
"learning_rate": 2.9781943381790362e-06,
|
953 |
+
"loss": 0.4697,
|
954 |
+
"step": 1350
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 2.3407917383820998,
|
958 |
+
"grad_norm": 0.03716883435845375,
|
959 |
+
"learning_rate": 2.9590665646518745e-06,
|
960 |
+
"loss": 0.7016,
|
961 |
+
"step": 1360
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 2.3580034423407916,
|
965 |
+
"grad_norm": 0.2217116802930832,
|
966 |
+
"learning_rate": 2.9399387911247135e-06,
|
967 |
+
"loss": 0.6504,
|
968 |
+
"step": 1370
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 2.3752151462994835,
|
972 |
+
"grad_norm": 0.08799983561038971,
|
973 |
+
"learning_rate": 2.9208110175975518e-06,
|
974 |
+
"loss": 0.3518,
|
975 |
+
"step": 1380
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 2.3924268502581754,
|
979 |
+
"grad_norm": 0.03414052352309227,
|
980 |
+
"learning_rate": 2.901683244070391e-06,
|
981 |
+
"loss": 0.5522,
|
982 |
+
"step": 1390
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 2.4096385542168672,
|
986 |
+
"grad_norm": 0.14305748045444489,
|
987 |
+
"learning_rate": 2.882555470543229e-06,
|
988 |
+
"loss": 0.7692,
|
989 |
+
"step": 1400
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 2.4268502581755595,
|
993 |
+
"grad_norm": 0.04776856303215027,
|
994 |
+
"learning_rate": 2.8634276970160673e-06,
|
995 |
+
"loss": 0.4163,
|
996 |
+
"step": 1410
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 2.4440619621342514,
|
1000 |
+
"grad_norm": 0.06117096543312073,
|
1001 |
+
"learning_rate": 2.8442999234889064e-06,
|
1002 |
+
"loss": 0.3797,
|
1003 |
+
"step": 1420
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 2.4612736660929433,
|
1007 |
+
"grad_norm": 0.1437849998474121,
|
1008 |
+
"learning_rate": 2.8251721499617447e-06,
|
1009 |
+
"loss": 0.3978,
|
1010 |
+
"step": 1430
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 2.478485370051635,
|
1014 |
+
"grad_norm": 0.03535407409071922,
|
1015 |
+
"learning_rate": 2.8060443764345833e-06,
|
1016 |
+
"loss": 0.7543,
|
1017 |
+
"step": 1440
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 2.495697074010327,
|
1021 |
+
"grad_norm": 0.034573543816804886,
|
1022 |
+
"learning_rate": 2.786916602907422e-06,
|
1023 |
+
"loss": 0.4385,
|
1024 |
+
"step": 1450
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 2.512908777969019,
|
1028 |
+
"grad_norm": 0.05264075845479965,
|
1029 |
+
"learning_rate": 2.7677888293802602e-06,
|
1030 |
+
"loss": 0.5788,
|
1031 |
+
"step": 1460
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 2.5301204819277108,
|
1035 |
+
"grad_norm": 0.047263339161872864,
|
1036 |
+
"learning_rate": 2.748661055853099e-06,
|
1037 |
+
"loss": 0.5397,
|
1038 |
+
"step": 1470
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 2.5473321858864026,
|
1042 |
+
"grad_norm": 0.03852943331003189,
|
1043 |
+
"learning_rate": 2.7295332823259375e-06,
|
1044 |
+
"loss": 0.3995,
|
1045 |
+
"step": 1480
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 2.5645438898450945,
|
1049 |
+
"grad_norm": 0.04756772890686989,
|
1050 |
+
"learning_rate": 2.710405508798776e-06,
|
1051 |
+
"loss": 0.5136,
|
1052 |
+
"step": 1490
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 2.581755593803787,
|
1056 |
+
"grad_norm": 0.07750029861927032,
|
1057 |
+
"learning_rate": 2.6912777352716144e-06,
|
1058 |
+
"loss": 0.8293,
|
1059 |
+
"step": 1500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 2.5989672977624787,
|
1063 |
+
"grad_norm": 0.047012392431497574,
|
1064 |
+
"learning_rate": 2.672149961744453e-06,
|
1065 |
+
"loss": 0.5485,
|
1066 |
+
"step": 1510
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 2.6161790017211706,
|
1070 |
+
"grad_norm": 0.04318179562687874,
|
1071 |
+
"learning_rate": 2.6530221882172918e-06,
|
1072 |
+
"loss": 0.4112,
|
1073 |
+
"step": 1520
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 2.6333907056798624,
|
1077 |
+
"grad_norm": 0.06012555584311485,
|
1078 |
+
"learning_rate": 2.63389441469013e-06,
|
1079 |
+
"loss": 0.7031,
|
1080 |
+
"step": 1530
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 2.6506024096385543,
|
1084 |
+
"grad_norm": 0.03384987264871597,
|
1085 |
+
"learning_rate": 2.614766641162969e-06,
|
1086 |
+
"loss": 0.439,
|
1087 |
+
"step": 1540
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 2.667814113597246,
|
1091 |
+
"grad_norm": 0.05770883336663246,
|
1092 |
+
"learning_rate": 2.5956388676358073e-06,
|
1093 |
+
"loss": 0.3991,
|
1094 |
+
"step": 1550
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 2.685025817555938,
|
1098 |
+
"grad_norm": 0.05510050430893898,
|
1099 |
+
"learning_rate": 2.5765110941086456e-06,
|
1100 |
+
"loss": 0.9784,
|
1101 |
+
"step": 1560
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 2.70223752151463,
|
1105 |
+
"grad_norm": 0.055017050355672836,
|
1106 |
+
"learning_rate": 2.5573833205814846e-06,
|
1107 |
+
"loss": 0.3796,
|
1108 |
+
"step": 1570
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 2.719449225473322,
|
1112 |
+
"grad_norm": 0.04332127049565315,
|
1113 |
+
"learning_rate": 2.538255547054323e-06,
|
1114 |
+
"loss": 0.433,
|
1115 |
+
"step": 1580
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 2.7366609294320137,
|
1119 |
+
"grad_norm": 0.060054711997509,
|
1120 |
+
"learning_rate": 2.519127773527162e-06,
|
1121 |
+
"loss": 0.2799,
|
1122 |
+
"step": 1590
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 2.7538726333907055,
|
1126 |
+
"grad_norm": 0.0340825691819191,
|
1127 |
+
"learning_rate": 2.5e-06,
|
1128 |
+
"loss": 0.6797,
|
1129 |
+
"step": 1600
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 2.7710843373493974,
|
1133 |
+
"grad_norm": 0.22405555844306946,
|
1134 |
+
"learning_rate": 2.480872226472839e-06,
|
1135 |
+
"loss": 0.6071,
|
1136 |
+
"step": 1610
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 2.7882960413080893,
|
1140 |
+
"grad_norm": 0.04493927210569382,
|
1141 |
+
"learning_rate": 2.4617444529456775e-06,
|
1142 |
+
"loss": 0.4004,
|
1143 |
+
"step": 1620
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 2.805507745266781,
|
1147 |
+
"grad_norm": 0.06454917788505554,
|
1148 |
+
"learning_rate": 2.4426166794185158e-06,
|
1149 |
+
"loss": 0.3903,
|
1150 |
+
"step": 1630
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 2.8227194492254735,
|
1154 |
+
"grad_norm": 0.07336492091417313,
|
1155 |
+
"learning_rate": 2.4234889058913544e-06,
|
1156 |
+
"loss": 0.9157,
|
1157 |
+
"step": 1640
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 2.8399311531841653,
|
1161 |
+
"grad_norm": 0.08775831758975983,
|
1162 |
+
"learning_rate": 2.404361132364193e-06,
|
1163 |
+
"loss": 0.4865,
|
1164 |
+
"step": 1650
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 2.857142857142857,
|
1168 |
+
"grad_norm": 0.03372660651803017,
|
1169 |
+
"learning_rate": 2.3852333588370317e-06,
|
1170 |
+
"loss": 0.3975,
|
1171 |
+
"step": 1660
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 2.874354561101549,
|
1175 |
+
"grad_norm": 0.034449730068445206,
|
1176 |
+
"learning_rate": 2.3661055853098704e-06,
|
1177 |
+
"loss": 0.3927,
|
1178 |
+
"step": 1670
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 2.891566265060241,
|
1182 |
+
"grad_norm": 0.02975647896528244,
|
1183 |
+
"learning_rate": 2.3469778117827086e-06,
|
1184 |
+
"loss": 0.3664,
|
1185 |
+
"step": 1680
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 2.908777969018933,
|
1189 |
+
"grad_norm": 0.037901297211647034,
|
1190 |
+
"learning_rate": 2.3278500382555473e-06,
|
1191 |
+
"loss": 0.3973,
|
1192 |
+
"step": 1690
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 2.9259896729776247,
|
1196 |
+
"grad_norm": 0.05662724748253822,
|
1197 |
+
"learning_rate": 2.308722264728386e-06,
|
1198 |
+
"loss": 0.4422,
|
1199 |
+
"step": 1700
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 2.9432013769363166,
|
1203 |
+
"grad_norm": 0.044157788157463074,
|
1204 |
+
"learning_rate": 2.289594491201224e-06,
|
1205 |
+
"loss": 0.4324,
|
1206 |
+
"step": 1710
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 2.960413080895009,
|
1210 |
+
"grad_norm": 0.04280713573098183,
|
1211 |
+
"learning_rate": 2.270466717674063e-06,
|
1212 |
+
"loss": 0.5674,
|
1213 |
+
"step": 1720
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 2.9776247848537007,
|
1217 |
+
"grad_norm": 0.04871043935418129,
|
1218 |
+
"learning_rate": 2.2513389441469015e-06,
|
1219 |
+
"loss": 0.3223,
|
1220 |
+
"step": 1730
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 2.9948364888123926,
|
1224 |
+
"grad_norm": 0.036149609833955765,
|
1225 |
+
"learning_rate": 2.2322111706197398e-06,
|
1226 |
+
"loss": 0.6471,
|
1227 |
+
"step": 1740
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 3.0120481927710845,
|
1231 |
+
"grad_norm": 0.02951321005821228,
|
1232 |
+
"learning_rate": 2.2130833970925784e-06,
|
1233 |
+
"loss": 0.3926,
|
1234 |
+
"step": 1750
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 3.0292598967297764,
|
1238 |
+
"grad_norm": 0.04006199911236763,
|
1239 |
+
"learning_rate": 2.193955623565417e-06,
|
1240 |
+
"loss": 0.6222,
|
1241 |
+
"step": 1760
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 3.0464716006884682,
|
1245 |
+
"grad_norm": 0.03238508850336075,
|
1246 |
+
"learning_rate": 2.1748278500382557e-06,
|
1247 |
+
"loss": 0.4144,
|
1248 |
+
"step": 1770
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 3.06368330464716,
|
1252 |
+
"grad_norm": 0.035425204783678055,
|
1253 |
+
"learning_rate": 2.1557000765110944e-06,
|
1254 |
+
"loss": 0.3745,
|
1255 |
+
"step": 1780
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 3.080895008605852,
|
1259 |
+
"grad_norm": 0.08181657642126083,
|
1260 |
+
"learning_rate": 2.1365723029839326e-06,
|
1261 |
+
"loss": 0.4049,
|
1262 |
+
"step": 1790
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 3.098106712564544,
|
1266 |
+
"grad_norm": 0.03448079526424408,
|
1267 |
+
"learning_rate": 2.1174445294567713e-06,
|
1268 |
+
"loss": 0.5435,
|
1269 |
+
"step": 1800
|
1270 |
+
}
|
1271 |
+
],
|
1272 |
+
"logging_steps": 10,
|
1273 |
+
"max_steps": 2905,
|
1274 |
+
"num_input_tokens_seen": 0,
|
1275 |
+
"num_train_epochs": 5,
|
1276 |
+
"save_steps": 300,
|
1277 |
+
"stateful_callbacks": {
|
1278 |
+
"TrainerControl": {
|
1279 |
+
"args": {
|
1280 |
+
"should_epoch_stop": false,
|
1281 |
+
"should_evaluate": false,
|
1282 |
+
"should_log": false,
|
1283 |
+
"should_save": true,
|
1284 |
+
"should_training_stop": false
|
1285 |
+
},
|
1286 |
+
"attributes": {}
|
1287 |
+
}
|
1288 |
+
},
|
1289 |
+
"total_flos": 0.0,
|
1290 |
+
"train_batch_size": 1,
|
1291 |
+
"trial_name": null,
|
1292 |
+
"trial_params": null
|
1293 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91116a9334865a57d085ece2efd2157dd49fc30fd2d8b9308f8a36934a61ff70
|
3 |
+
size 6968
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|