File size: 1,829 Bytes
9977197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b004b5b
 
 
9977197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b004b5b
9977197
 
 
 
 
 
b004b5b
 
 
 
 
 
 
9977197
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
base_model: aubmindlab/bert-base-arabertv02
tags:
- generated_from_keras_callback
model-index:
- name: arabert-ner-rihla-test-2
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# arabert-ner-rihla-test-2

This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0305
- Validation Loss: 0.0395
- Epoch: 6

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 175, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.2834     | 0.0949          | 0     |
| 0.0963     | 0.0559          | 1     |
| 0.0646     | 0.0423          | 2     |
| 0.0468     | 0.0402          | 3     |
| 0.0383     | 0.0391          | 4     |
| 0.0341     | 0.0407          | 5     |
| 0.0305     | 0.0395          | 6     |


### Framework versions

- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2