chintagunta85 commited on
Commit
613d35f
1 Parent(s): e93c47e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - ade_drug_effect_ner
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: electramed-small-ADE-DRUG-EFFECT-ner-v3
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: ade_drug_effect_ner
19
+ type: ade_drug_effect_ner
20
+ config: ade
21
+ split: train
22
+ args: ade
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.7436108821104699
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.6711309523809523
30
+ - name: F1
31
+ type: f1
32
+ value: 0.7055142745404771
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.9334986406954859
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # electramed-small-ADE-DRUG-EFFECT-ner-v3
42
+
43
+ This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the ade_drug_effect_ner dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.1626
46
+ - Precision: 0.7436
47
+ - Recall: 0.6711
48
+ - F1: 0.7055
49
+ - Accuracy: 0.9335
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 16
70
+ - eval_batch_size: 16
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 10
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | 0.3393 | 1.0 | 336 | 0.3055 | 0.6126 | 0.6648 | 0.6376 | 0.9218 |
81
+ | 0.2503 | 2.0 | 672 | 0.2138 | 0.7025 | 0.6905 | 0.6964 | 0.9300 |
82
+ | 0.1494 | 3.0 | 1008 | 0.1879 | 0.7342 | 0.6555 | 0.6926 | 0.9326 |
83
+ | 0.1152 | 4.0 | 1344 | 0.1755 | 0.7323 | 0.6797 | 0.7050 | 0.9327 |
84
+ | 0.178 | 5.0 | 1680 | 0.1726 | 0.7279 | 0.6827 | 0.7045 | 0.9326 |
85
+ | 0.1814 | 6.0 | 2016 | 0.1654 | 0.7358 | 0.6734 | 0.7032 | 0.9332 |
86
+ | 0.1292 | 7.0 | 2352 | 0.1641 | 0.7332 | 0.6849 | 0.7082 | 0.9336 |
87
+ | 0.1107 | 8.0 | 2688 | 0.1638 | 0.7520 | 0.6522 | 0.6985 | 0.9337 |
88
+ | 0.1911 | 9.0 | 3024 | 0.1625 | 0.7503 | 0.6596 | 0.7020 | 0.9331 |
89
+ | 0.1517 | 10.0 | 3360 | 0.1626 | 0.7436 | 0.6711 | 0.7055 | 0.9335 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.22.2
95
+ - Pytorch 1.12.1+cu113
96
+ - Datasets 2.5.1
97
+ - Tokenizers 0.12.1