Upload model trained with Unsloth
Browse filesUpload model trained with Unsloth 2x faster
- README.md +2 -98
- adapter_config.json +37 -0
- adapter_model.safetensors +3 -0
README.md
CHANGED
@@ -8,21 +8,10 @@ tags:
|
|
8 |
- trl
|
9 |
license: apache-2.0
|
10 |
language:
|
11 |
-
-
|
12 |
-
library_name: peft
|
13 |
-
datasets:
|
14 |
-
- Mollel/alpaca-swahili
|
15 |
-
- Mollel/swahili_pretrain_data
|
16 |
-
- wikimedia/wikipedia
|
17 |
---
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
This model has been pre-trained and fine-tuned specifically for Swahili language tasks.
|
23 |
-
The training includes 4-bit quantization to optimize performance on lower-resource hardware.
|
24 |
-
|
25 |
-
This is a development version and it's not recommended for general use.
|
26 |
|
27 |
- **Developed by:** calcpy
|
28 |
- **License:** apache-2.0
|
@@ -31,88 +20,3 @@ This is a development version and it's not recommended for general use.
|
|
31 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
32 |
|
33 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
34 |
-
|
35 |
-
|
36 |
-
### Out-of-Scope Use
|
37 |
-
|
38 |
-
The model is not designed for tasks outside of the Swahili language or tasks requiring highly factual precision in domains not covered by the training datasets.
|
39 |
-
|
40 |
-
|
41 |
-
## Bias, Risks, and Limitations
|
42 |
-
|
43 |
-
The model inherits any potential biases present in the Swahili Wikipedia and Mollel's dataset. Users should be cautious when applying this model to sensitive applications.
|
44 |
-
|
45 |
-
|
46 |
-
### Recommendations
|
47 |
-
|
48 |
-
Users should perform bias evaluations specific to their use case and ensure that any downstream applications consider potential ethical implications.
|
49 |
-
|
50 |
-
## How to Get Started with the Model
|
51 |
-
|
52 |
-
Use the code below to get started with the model.
|
53 |
-
|
54 |
-
```python
|
55 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
56 |
-
|
57 |
-
# Load the model and tokenizer
|
58 |
-
model = AutoModelForCausalLM.from_pretrained("path_to_your_model")
|
59 |
-
tokenizer = AutoTokenizer.from_pretrained("path_to_your_model")
|
60 |
-
|
61 |
-
# Example inference
|
62 |
-
instruction = "Endelea mlolongo wa fibonacci:"
|
63 |
-
input_data = "1, 1, 2, 3, 5, 8,"
|
64 |
-
prompt = f"Chini ni maagizo ambayo yanaelezea kazi. Andika jibu ambalo linakamilisha ombi ipasavyo.\n### Maagizo:\n{instruction}\n\n{input_data}\n### Jibu:\n"
|
65 |
-
|
66 |
-
inputs = tokenizer([f"{prompt}"], return_tensors="pt").to("cuda")
|
67 |
-
outputs = model.generate(**inputs, max_new_tokens=64, use_cache=True)
|
68 |
-
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
|
69 |
-
```
|
70 |
-
|
71 |
-
In this example, the model generates the continuation of the Fibonacci sequence in Swahili.
|
72 |
-
|
73 |
-
|
74 |
-
## Training Details
|
75 |
-
|
76 |
-
### Training Data
|
77 |
-
|
78 |
-
The model was pre-trained using a combination of [Swahili Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia)
|
79 |
-
and [Mollel’s Swahili pretraining dataset](https://huggingface.co/datasets/Mollel/swahili_pretrain_data).
|
80 |
-
Both datasets were processed to include End-of-Sequence (EOS) tokens and formatted for pretraining tasks.
|
81 |
-
|
82 |
-
Finetuning was performed on [Mollel's Alpaca dataset](https://huggingface.co/datasets/Mollel/alpaca-swahili)
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
#### Training Hyperparameters
|
87 |
-
|
88 |
-
- ** Training regime: Mixed precision (fp16/bf16)
|
89 |
-
- ** Batch size: 2 per device
|
90 |
-
- ** Max steps: 24,000 for pretraining, 1,200 for fine-tuning
|
91 |
-
- ** Learning rate: 5e-5 (1e-5 for embeddings)
|
92 |
-
- ** Warmup steps: 100 for pretraining, 10 for fine-tuning
|
93 |
-
- ** Weight decay: 0.01 (pretraining), 0.00 (fine-tuning)
|
94 |
-
|
95 |
-
## Evaluation
|
96 |
-
|
97 |
-
The model was only manually evaluated on the Alpaca Swahili dataset for instruction-following capabilities.
|
98 |
-
|
99 |
-
#### Metrics
|
100 |
-
|
101 |
-
Evaluation metrics will be required for language generation quality and instruction-following precision
|
102 |
-
|
103 |
-
#### Summary
|
104 |
-
|
105 |
-
This is a purely technical release for a small test model in order to test pre-training and fine-tuning code on a single GPU.
|
106 |
-
|
107 |
-
|
108 |
-
## Environmental Impact
|
109 |
-
|
110 |
-
- **Hardware Type:** NVIDIA GeForce RTX 4090 24 GiB
|
111 |
-
- **Hours used:** ~12 hours
|
112 |
-
|
113 |
-
|
114 |
-
### Compute Infrastructure
|
115 |
-
|
116 |
-
Ubuntu 22.04.5 LTS with multiple NVIDIA GeForce RTX 4090 cards
|
117 |
-
|
118 |
-
Only a single GPU unit was used
|
|
|
8 |
- trl
|
9 |
license: apache-2.0
|
10 |
language:
|
11 |
+
- en
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
+
# Uploaded model
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
- **Developed by:** calcpy
|
17 |
- **License:** apache-2.0
|
|
|
20 |
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
adapter_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "unsloth/llama-3.2-3b-instruct-bnb-4bit",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": [
|
18 |
+
"lm_head",
|
19 |
+
"embed_tokens"
|
20 |
+
],
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 16,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"down_proj",
|
27 |
+
"q_proj",
|
28 |
+
"up_proj",
|
29 |
+
"v_proj",
|
30 |
+
"gate_proj",
|
31 |
+
"k_proj",
|
32 |
+
"o_proj"
|
33 |
+
],
|
34 |
+
"task_type": "CAUSAL_LM",
|
35 |
+
"use_dora": false,
|
36 |
+
"use_rslora": true
|
37 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bae76e94fd63943fefe6582f3fc247723f052f40a61c1c72a1789bdd836fd496
|
3 |
+
size 1673317496
|