Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +20 -20
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +2 -2
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 289.87 +/- 20.17
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d59edc1ac20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d59edc1acb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d59edc1ad40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d59edc1add0>", "_build": "<function ActorCriticPolicy._build at 0x7d59edc1ae60>", "forward": "<function ActorCriticPolicy.forward at 0x7d59edc1aef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d59edc1af80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d59edc1d050>", "_predict": "<function ActorCriticPolicy._predict at 0x7d59edc1d0e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d59edc1d170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d59edc1d200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d59edc1d290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7d59edc6c540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681287658675341179, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzfgAPuwLnT9I/dI+dpAMvwmIZ77IN4K+AAAAAAAAAADqzIc+yIiwP00GQj90NGe+/9NIvkZwBb4AAAAAAAAAAA621L5BTuQ+6DH1vrDGj7814gE+dWY4PgAAAAAAAAAAhgWdPvGamT6m6bw+Sv6rv4R8+z1NAKo+AAAAAAAAAAB7DaK+/IqiP3yyQb9L6e6+ngatO9YErDwAAAAAAAAAALpIFT5Thp8/WUabPhzs/L4XKuo9C70xPgAAAAAAAAAApsXQPX6hjD4VqZu6r4SvvyrIAj84UHk+AAAAAAAAAADVbri+M6i2P96iNb8V1we/NlcKP4QAnT0AAAAAAAAAAAC2Yz0oKLo/Bx9JPzkQVT6AOpC9aXoLvgAAAAAAAAAAZgB3vPdrbT+mScM71kREvzp0SL6lFZe9AAAAAAAAAACTQH0+9w9dP0c9PT9ktH+/Dyd2vSM++z0AAAAAAAAAAGZAyLw6a40/Emq2vfNmK79uM6E8Gt6nPQAAAAAAAAAAzZZQPSrCuT+arMw+qb8ePVViD76r3nS+AAAAAAAAAACdLv2+DzVmP0Apab90t0i/63eHPlLqmL0AAAAAAAAAAGa5AL0OQak/lvhtvmJ/475tBFE8NT2kvQAAAAAAAAAAzbqwvIqStT9OfuO+m1VvPHxzvTzlj/89AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU5W2uMbYW8CUhpRSlIwBbJRLSYwBdJRHQAH3t0FKTSt1fZQoaAZoCWgPQwjChxIteSBUwJSGlFKUaBVLYGgWR0ACDi83++/QdX2UKGgGaAloD0MIr5Y7M0EgbcCUhpRSlGgVS1JoFkdAAjPPcBU70XV9lChoBmgJaA9DCP0QGyycVFjAlIaUUpRoFUtKaBZHQAJIFFDv3Jx1fZQoaAZoCWgPQwh1djI4SvddwJSGlFKUaBVLdmgWR0ACSLXL/0dzdX2UKGgGaAloD0MIgPRNmgayZMCUhpRSlGgVS2ZoFkdAAl8gIQe3hHV9lChoBmgJaA9DCHXniefsNmrAlIaUUpRoFUtqaBZHQAK0euFHrhR1fZQoaAZoCWgPQwiZuFUQA29cwJSGlFKUaBVLWWgWR0AC5eE7GNrCdX2UKGgGaAloD0MIGy5yT1enWsCUhpRSlGgVS1hoFkdAAyLG7z06HXV9lChoBmgJaA9DCFHc8SY/f2fAlIaUUpRoFUtmaBZHQAOIRh+fAbh1fZQoaAZoCWgPQwiqSIWxhb5ewJSGlFKUaBVLPmgWR0ADmQSzw+dLdX2UKGgGaAloD0MIIlM+BFUPRsCUhpRSlGgVS1hoFkdAA9UPxx1gY3V9lChoBmgJaA9DCINqgxPRRnDAlIaUUpRoFUtjaBZHQAPyqlxffGd1fZQoaAZoCWgPQwgVjiCV4tt0wJSGlFKUaBVLbGgWR0AEBhWo3rD7dX2UKGgGaAloD0MIAHUDBd4FS8CUhpRSlGgVS0FoFkdABATewcHW0HV9lChoBmgJaA9DCDHO34RCnETAlIaUUpRoFUtDaBZHQASBw2l2vB91fZQoaAZoCWgPQwg1XyUfu7lTwJSGlFKUaBVLS2gWR0AEfzjFQ2uQdX2UKGgGaAloD0MIQrEVNC0hVcCUhpRSlGgVS1FoFkdABMgTRIBikXV9lChoBmgJaA9DCIOj5NU5DFvAlIaUUpRoFUtbaBZHQAVWUB4lhPV1fZQoaAZoCWgPQwhYIHpSZlh9wJSGlFKUaBVLXmgWR0AFiveP7vXtdX2UKGgGaAloD0MI6LtbWaLMUMCUhpRSlGgVS1FoFkdABatBfKISDnV9lChoBmgJaA9DCJKSHobWwGTAlIaUUpRoFUtnaBZHQAWzhxYJVsF1fZQoaAZoCWgPQwjy6bEtgw9wwJSGlFKUaBVLe2gWR0AF1DneSB9UdX2UKGgGaAloD0MIX7LxYAvfbcCUhpRSlGgVS0toFkdABiPjn3cpLHV9lChoBmgJaA9DCL5Nf/Zj5HPAlIaUUpRoFUtLaBZHQAY1EVnEl3R1fZQoaAZoCWgPQwjfap24HGZUwJSGlFKUaBVLYWgWR0AGd5MURFqjdX2UKGgGaAloD0MIRYMUPIUIW8CUhpRSlGgVS1JoFkdABtWbPQfIS3V9lChoBmgJaA9DCHjy6bEtRl7AlIaUUpRoFUuAaBZHQAcRe1KGtZF1fZQoaAZoCWgPQwhr14S0hmp0wJSGlFKUaBVLXmgWR0AHLzRQaaTfdX2UKGgGaAloD0MIlWQdji4oYMCUhpRSlGgVS2FoFkdABy0eEIw/PnV9lChoBmgJaA9DCHWxaaUQEFfAlIaUUpRoFUs8aBZHQAdhnJ1aGHp1fZQoaAZoCWgPQwjMDYY6rCNiwJSGlFKUaBVLcmgWR0AH5nlGPPszdX2UKGgGaAloD0MId0gxQCJxdMCUhpRSlGgVS2RoFkdAB+atLcsUZnV9lChoBmgJaA9DCCLGa17VwFPAlIaUUpRoFUtHaBZHQAfx0uDjBEd1fZQoaAZoCWgPQwi4lPPF3tdWwJSGlFKUaBVLeWgWR0AIsA93bEgodX2UKGgGaAloD0MI9pZyvpiOeMCUhpRSlGgVS1loFkdACUj9GZuyeXV9lChoBmgJaA9DCFSOyeJ+bnTAlIaUUpRoFUuEaBZHQAlm4qgAZKp1fZQoaAZoCWgPQwiXOzPB8DtzwJSGlFKUaBVLbWgWR0AJi4e9zwMIdX2UKGgGaAloD0MIdXPxtz0QW8CUhpRSlGgVS2toFkdACZ4cFQl8gXV9lChoBmgJaA9DCLaDEfsEDFnAlIaUUpRoFUtfaBZHQAnv1lGwzLx1fZQoaAZoCWgPQwi/fogNFkpiwJSGlFKUaBVLUmgWR0AKPtUn5SFXdX2UKGgGaAloD0MIZan1fqOIW8CUhpRSlGgVS3RoFkdAClucc2itaXV9lChoBmgJaA9DCP7Soj7JiFzAlIaUUpRoFUtXaBZHQAqoGIKtxMp1fZQoaAZoCWgPQwhDU3b6QfB1wJSGlFKUaBVLi2gWR0AKtC/oJRfndX2UKGgGaAloD0MIRWXDmsqbfcCUhpRSlGgVS2hoFkdACuqNIbwSanV9lChoBmgJaA9DCKIm+nyUKGbAlIaUUpRoFUtraBZHQAskNnXd0q91fZQoaAZoCWgPQwgWTWcng+hWwJSGlFKUaBVLeGgWR0ALQYk3S8aodX2UKGgGaAloD0MIRUseT8tzQUCUhpRSlGgVS11oFkdAC3PjXFtKqXV9lChoBmgJaA9DCKkXfJqTvyBAlIaUUpRoFUtraBZHQAvwqI7/4qR1fZQoaAZoCWgPQwgibk4lgxpjwJSGlFKUaBVLQWgWR0AL/dRBNVR2dX2UKGgGaAloD0MIKUF/oUdLbMCUhpRSlGgVS25oFkdADBcMVk+X7nV9lChoBmgJaA9DCEW7Cik/RlLAlIaUUpRoFUtdaBZHQAw2EsasIVx1fZQoaAZoCWgPQwi8kA4PYehvwJSGlFKUaBVLXWgWR0AMvgxagVXWdX2UKGgGaAloD0MImlyMgXXnaMCUhpRSlGgVS09oFkdADL4+KTB68nV9lChoBmgJaA9DCNobfGEyJ1vAlIaUUpRoFUs+aBZHQAzXVbzK9wp1fZQoaAZoCWgPQwhQqn063oB2wJSGlFKUaBVLWWgWR0ANX5N47ihndX2UKGgGaAloD0MI3GYqxCNBXMCUhpRSlGgVS2loFkdADWmdiDujRHV9lChoBmgJaA9DCBr4UQ37LFXAlIaUUpRoFUtKaBZHQA2FqJuVHFx1fZQoaAZoCWgPQwhmFqHYCrV5wJSGlFKUaBVLUGgWR0ANhgZ0jkdWdX2UKGgGaAloD0MIGqIKf4ZXYcCUhpRSlGgVS3BoFkdADYcYIjW07nV9lChoBmgJaA9DCFTiOsYV/27AlIaUUpRoFUtNaBZHQA4ZB9kSVW11fZQoaAZoCWgPQwj3kPC9v2NWwJSGlFKUaBVLUWgWR0AOD+glF+d9dX2UKGgGaAloD0MITkS/tn7VW8CUhpRSlGgVS0NoFkdADmEzO5avBHV9lChoBmgJaA9DCGSUZ14O4WbAlIaUUpRoFUtkaBZHQA6oJiRW9151fZQoaAZoCWgPQwgVkWEVb59dwJSGlFKUaBVLU2gWR0AO4RIz3yqddX2UKGgGaAloD0MIImx4eqXlX8CUhpRSlGgVS4NoFkdADvx/d69kBnV9lChoBmgJaA9DCCnpYWh1eVXAlIaUUpRoFUtAaBZHQA8cDKYAsCl1fZQoaAZoCWgPQwjuz0VDxqdPwJSGlFKUaBVLPWgWR0APiX6ZYxL1dX2UKGgGaAloD0MInUfF/11fdMCUhpRSlGgVS2NoFkdAD6dfb9If83V9lChoBmgJaA9DCDsdyHpq9FrAlIaUUpRoFUtXaBZHQA/Nx+8XenB1fZQoaAZoCWgPQwgOvcXDO2F2wJSGlFKUaBVLX2gWR0AQCcEvCdjHdX2UKGgGaAloD0MIHHqLh/eIVsCUhpRSlGgVS0toFkdAEBZ+QU5+6XV9lChoBmgJaA9DCJoGRfMAYk7AlIaUUpRoFUtDaBZHQBBHB+F10T11fZQoaAZoCWgPQwhN9zqpL092wJSGlFKUaBVLW2gWR0AQWmaYu01JdX2UKGgGaAloD0MIJjeKrLVJacCUhpRSlGgVS4hoFkdAEGSIgvDgqHV9lChoBmgJaA9DCO0t5XwROYLAlIaUUpRoFUtnaBZHQBCasIVuaWp1fZQoaAZoCWgPQwjNzqJ3KtliwJSGlFKUaBVLbGgWR0AQsrEtNBWxdX2UKGgGaAloD0MIFTyFXKkuXcCUhpRSlGgVS1NoFkdAEQwGGEf1YnV9lChoBmgJaA9DCOUK73IRx0PAlIaUUpRoFUtLaBZHQBE19Wp6yB11fZQoaAZoCWgPQwjDKAgeH3N2wJSGlFKUaBVLbmgWR0ARNlqagElmdX2UKGgGaAloD0MIVtP1RNdFGMCUhpRSlGgVS3loFkdAEUASFoL5RHV9lChoBmgJaA9DCObpXFGKaHnAlIaUUpRoFUtlaBZHQBFMhC+lCTl1fZQoaAZoCWgPQwjWbyamCylRwJSGlFKUaBVLVWgWR0ARWcEvCdjHdX2UKGgGaAloD0MIGmoUkkxDbcCUhpRSlGgVS2xoFkdAEXmIj4YaYXV9lChoBmgJaA9DCEH1DyKZl2nAlIaUUpRoFUs/aBZHQBGDb8FY+0R1fZQoaAZoCWgPQwhOmDCalfFhwJSGlFKUaBVLT2gWR0ARh+RYA80UdX2UKGgGaAloD0MI4+DSMWcUYsCUhpRSlGgVS39oFkdAEahJAdGRWHV9lChoBmgJaA9DCKGi6lc6gFbAlIaUUpRoFUtTaBZHQBHknCwbEP11fZQoaAZoCWgPQwj44LVLGylZwJSGlFKUaBVLSmgWR0ASCzOX3QD3dX2UKGgGaAloD0MIBrggW5YLU8CUhpRSlGgVSzxoFkdAEibHIZIg/3V9lChoBmgJaA9DCE2EDU+vrmnAlIaUUpRoFUuAaBZHQBI/vWpZOi51fZQoaAZoCWgPQwjAeAYNfQV2wJSGlFKUaBVLeWgWR0ASTSE12q1gdX2UKGgGaAloD0MI0PHR4owrdMCUhpRSlGgVS3FoFkdAElRLsa86FXV9lChoBmgJaA9DCMHG9e/64ljAlIaUUpRoFUtBaBZHQBJircTJyQx1fZQoaAZoCWgPQwjFjVvMz8pVwJSGlFKUaBVLP2gWR0ASbA9FF2FGdX2UKGgGaAloD0MIZw3eV2XJZcCUhpRSlGgVS0RoFkdAEnEORT0g83V9lChoBmgJaA9DCEoKLIApQxPAlIaUUpRoFUtIaBZHQBK/AGjbi6x1fZQoaAZoCWgPQwiI9UatMMdWwJSGlFKUaBVLVmgWR0ASyJ79hqj8dX2UKGgGaAloD0MIFJSilXtjXcCUhpRSlGgVS35oFkdAEuIpH7P6bnV9lChoBmgJaA9DCF7WxAJfqV/AlIaUUpRoFUtHaBZHQBLoXwb2lEZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Thu Apr 6 11:02:12 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.8.0", "PyTorch": "1.13.0+cpu", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x721cf6b1b950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x721cf6b1b9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x721cf6b1ba70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x721cf6b1bb00>", "_build": "<function ActorCriticPolicy._build at 0x721cf6b1bb90>", "forward": "<function ActorCriticPolicy.forward at 0x721cf6b1bc20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x721cf6b1bcb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x721cf6b1bd40>", "_predict": "<function ActorCriticPolicy._predict at 0x721cf6b1bdd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x721cf6b1be60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x721cf6b1bef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x721cf6b1bf80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x721cf6af3180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681288904830902892, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzXx7PGcQsT9uAR8+dHB4vimrjrwuUA69AAAAAAAAAAAzXS+8Nq0rvN7HFL259E097DGcvW+eIz4AAIA/AACAP5pZrzuPNi665kNJvWDNlrgSRdq6rdEHOAAAgD8AAIA/ZlOYvFRNZT8uoUK9EruNv/LyjL0yt3C9AAAAAAAAAABNecc9WkSCP75Olj6b2U2/C6+OPs5XgT4AAAAAAAAAADOHwTukQGq5LtV1vZqzJ7PxIJS6eSBGMwAAgD8AAIA/MysaO4X78bknOZMzelkDL3ddITsu5cizAACAPwAAgD8afCG9xcyQP9YIEb6WNUy/OLZhvsXeUL0AAAAAAAAAAJqbIzz/uLQ/XLa6Pb6sBL6Velq88DqqvAAAAAAAAAAATS2VvTDalT9tiL++pZFXv4DQE76xUrS+AAAAAAAAAAAm2RY+Kk1aPxMxAT6VQlS/e8vBPky6CT4AAAAAAAAAALOhwj1bSXU/gyGIPp3WX79MI2c+wGhrPgAAAAAAAAAAZttzPRK1Tz/LEuE90Gxuv587Hz4q2DM8AAAAAAAAAADNPM47SW00PSnPqrw1kry+HOLpPdJsuj0AAAAAAAAAAJq8QT4dKXc/xpeRPqKFML+q9/o+ysUOPgAAAAAAAAAAmu88vRQUk7o6MCI8j8jVuHE2eLqa6Me3AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKlWi7O08dECUhpRSlIwBbJRLyYwBdJRHQMRFJUqx1Pp1fZQoaAZoCWgPQwj260533mFzQJSGlFKUaBVLuWgWR0DERSp5s0pFdX2UKGgGaAloD0MISNxj6UMLc0CUhpRSlGgVS6poFkdAxEUqjDbaiHV9lChoBmgJaA9DCPRtwVKdw3FAlIaUUpRoFUuHaBZHQMRFMNmUW2x1fZQoaAZoCWgPQwgz/n3GhZtyQJSGlFKUaBVLtGgWR0DERTVhy8zzdX2UKGgGaAloD0MI9lymJgGPckCUhpRSlGgVS7loFkdAxEU5PqLS/nV9lChoBmgJaA9DCBNJ9DLK8nFAlIaUUpRoFUuqaBZHQMRFQ6vJRwZ1fZQoaAZoCWgPQwh+OEiIcrJwQJSGlFKUaBVLm2gWR0DERUpR8+ibdX2UKGgGaAloD0MIW88Qjllkc0CUhpRSlGgVS7BoFkdAxEVK01IiDHV9lChoBmgJaA9DCM4ZUdrbIHBAlIaUUpRoFUusaBZHQMRFU2Lgn+h1fZQoaAZoCWgPQwh2/1iITpNwQJSGlFKUaBVLpGgWR0DERVs/bCaadX2UKGgGaAloD0MIkBSRYdWZckCUhpRSlGgVS5FoFkdAxEVbS2H+InV9lChoBmgJaA9DCIJUih1NpHFAlIaUUpRoFUuZaBZHQMRFYwIUrTZ1fZQoaAZoCWgPQwiELAsmvgBzQJSGlFKUaBVLkGgWR0DERWqbWmP6dX2UKGgGaAloD0MIqU2c3K8ucECUhpRSlGgVS5poFkdAxEWCAbQ1JnV9lChoBmgJaA9DCBIwurz5ZnFAlIaUUpRoFUujaBZHQMRFgsFEAo51fZQoaAZoCWgPQwjnOSLfJXlvQJSGlFKUaBVLkGgWR0DERYLDdgv2dX2UKGgGaAloD0MI4Xt/g3ZScECUhpRSlGgVS6FoFkdAxEWGh5gPVnV9lChoBmgJaA9DCLByaJGtNHNAlIaUUpRoFUvaaBZHQMRFjZprULF1fZQoaAZoCWgPQwhb0HtjCAZ0QJSGlFKUaBVLr2gWR0DERZlA1NxmdX2UKGgGaAloD0MIYVRSJ2Bmc0CUhpRSlGgVS61oFkdAxEWb58jRlnV9lChoBmgJaA9DCFfQtMQK+3BAlIaUUpRoFUuSaBZHQMRFnoSL61t1fZQoaAZoCWgPQwjeq1YmvIZwQJSGlFKUaBVLp2gWR0DERaNAVwgldX2UKGgGaAloD0MIrP2d7dHtckCUhpRSlGgVS6VoFkdAxEWo7aqS5nV9lChoBmgJaA9DCIaSyakdb3JAlIaUUpRoFUuHaBZHQMRFqO7xusN1fZQoaAZoCWgPQwh1dcdi2w9zQJSGlFKUaBVLt2gWR0DERbty3kPudX2UKGgGaAloD0MIV+iDZexFcUCUhpRSlGgVS5NoFkdAxEW+D1XeWXV9lChoBmgJaA9DCGDMlqwKSnNAlIaUUpRoFUujaBZHQMRFv8Gs3hp1fZQoaAZoCWgPQwj7lGOyuDNGQJSGlFKUaBVLeGgWR0DERcY3FUADdX2UKGgGaAloD0MItRmnIao5ckCUhpRSlGgVS75oFkdAxEXHtIClrXV9lChoBmgJaA9DCOihtg0jGHFAlIaUUpRoFUugaBZHQMRF3I4VARl1fZQoaAZoCWgPQwgpB7MJcL9xQJSGlFKUaBVLsGgWR0DERemvt+kQdX2UKGgGaAloD0MIJSL8i6BlckCUhpRSlGgVS7hoFkdAxEXqX0Gu93V9lChoBmgJaA9DCF6CUx+IfHBAlIaUUpRoFUuSaBZHQMRF649HMEB1fZQoaAZoCWgPQwj9vn/zYqBxQJSGlFKUaBVLp2gWR0DEReujj7yhdX2UKGgGaAloD0MIOjyE8dP9cECUhpRSlGgVS45oFkdAxEXulMRHw3V9lChoBmgJaA9DCM+/XfarJ3JAlIaUUpRoFUuXaBZHQMRF91awD/51fZQoaAZoCWgPQwhUAmISLm9wQJSGlFKUaBVLlGgWR0DERft/rjYJdX2UKGgGaAloD0MIgV64c+Ehc0CUhpRSlGgVS51oFkdAxEYAFSKm9HV9lChoBmgJaA9DCOntz0XDBXJAlIaUUpRoFUu9aBZHQMRGBF6zE751fZQoaAZoCWgPQwgijQqc7O1xQJSGlFKUaBVLgGgWR0DERgalrM1TdX2UKGgGaAloD0MIk6mCUUllcUCUhpRSlGgVS4toFkdAxEYItWdVenV9lChoBmgJaA9DCJiiXBp/vXBAlIaUUpRoFUuOaBZHQMRGFH8jzI51fZQoaAZoCWgPQwjNrKWANGhyQJSGlFKUaBVLrWgWR0DERh7kXDWLdX2UKGgGaAloD0MI5Lz/j1O8cUCUhpRSlGgVS7doFkdAxEYutdzGP3V9lChoBmgJaA9DCBhd3hyuGHFAlIaUUpRoFUuPaBZHQMRGOjbBXS11fZQoaAZoCWgPQwjRBIpYxAFwQJSGlFKUaBVLk2gWR0DERkGnfl6rdX2UKGgGaAloD0MIrBvvjgydb0CUhpRSlGgVS6hoFkdAxEZLmkFfRnV9lChoBmgJaA9DCD3wMVjxInRAlIaUUpRoFUvBaBZHQMRGS6RISUV1fZQoaAZoCWgPQwiELuHQG8ZyQJSGlFKUaBVLq2gWR0DERkx59mYjdX2UKGgGaAloD0MIOEw0SMHXcUCUhpRSlGgVS7FoFkdAxEZQ9alk6XV9lChoBmgJaA9DCEG2LF9Xy3BAlIaUUpRoFUueaBZHQMRGUxJul411fZQoaAZoCWgPQwh968N6o65yQJSGlFKUaBVLnmgWR0DERmCYG+sYdX2UKGgGaAloD0MIfbJiuLrQc0CUhpRSlGgVS7RoFkdAxEZjppvgnHV9lChoBmgJaA9DCPA1BMflrnJAlIaUUpRoFUutaBZHQMRGZMe4kNZ1fZQoaAZoCWgPQwjYn8TnDq9wQJSGlFKUaBVLkWgWR0DERmn2GqPwdX2UKGgGaAloD0MIR8mrc8wvcUCUhpRSlGgVS5BoFkdAxEZzGz8gp3V9lChoBmgJaA9DCG+ERUWcV3JAlIaUUpRoFUu3aBZHQMRGc5ggHNZ1fZQoaAZoCWgPQwjaqE4H8tRyQJSGlFKUaBVLv2gWR0DERnYFmnO0dX2UKGgGaAloD0MIJzEIrJwZaUCUhpRSlGgVTegDaBZHQMRGeogNgBt1fZQoaAZoCWgPQwimQjwS75pxQJSGlFKUaBVLn2gWR0DERpScPOIJdX2UKGgGaAloD0MIWmd8X5xsckCUhpRSlGgVS79oFkdAxEacFev6j3V9lChoBmgJaA9DCLITXoJTGURAlIaUUpRoFUtpaBZHQMRGnpdjXnR1fZQoaAZoCWgPQwhAbVSnw7dxQJSGlFKUaBVLnGgWR0DERqMWAPNFdX2UKGgGaAloD0MIJ2iTw2dackCUhpRSlGgVS51oFkdAxEakT+vQnnV9lChoBmgJaA9DCNUGJ6IfL3FAlIaUUpRoFUueaBZHQMRGpEHlfZ51fZQoaAZoCWgPQwgzN9+ILgtzQJSGlFKUaBVLu2gWR0DERqtOTJQtdX2UKGgGaAloD0MI6INlbGgtckCUhpRSlGgVS6BoFkdAxEasEidJ8XV9lChoBmgJaA9DCHEFFOrpZ3NAlIaUUpRoFUuuaBZHQMRGsSu6mO51fZQoaAZoCWgPQwixbVFmw5txQJSGlFKUaBVLkGgWR0DERrj8vVVhdX2UKGgGaAloD0MIHottUhHWcUCUhpRSlGgVS59oFkdAxEa7+az/qHV9lChoBmgJaA9DCNtMhXikJXRAlIaUUpRoFUvUaBZHQMRG1jiwSrZ1fZQoaAZoCWgPQwgBGTp20KJzQJSGlFKUaBVLu2gWR0DERtrDMvAXdX2UKGgGaAloD0MIAALWqt1Nc0CUhpRSlGgVS71oFkdAxEbeyzHCGnV9lChoBmgJaA9DCHpuoSvRm3RAlIaUUpRoFUvLaBZHQMRG5H+yZ8d1fZQoaAZoCWgPQwgktybdlg90QJSGlFKUaBVLx2gWR0DERujXg9/0dX2UKGgGaAloD0MI5xvRPWvGcUCUhpRSlGgVS5NoFkdAxEbtu2qkunV9lChoBmgJaA9DCLjoZKk1QXBAlIaUUpRoFUuhaBZHQMRG7oddVvN1fZQoaAZoCWgPQwjjN4WVCgRKQJSGlFKUaBVLeGgWR0DERu7/0dzXdX2UKGgGaAloD0MI+FW5UPm1cUCUhpRSlGgVS5NoFkdAxEb1YywfQ3V9lChoBmgJaA9DCP7Soj4JdXJAlIaUUpRoFUuqaBZHQMRG/Alv60p1fZQoaAZoCWgPQwhOY3st6BVxQJSGlFKUaBVLomgWR0DERv0jcEeRdX2UKGgGaAloD0MICK2HL9Nac0CUhpRSlGgVS6hoFkdAxEb/S0BwM3V9lChoBmgJaA9DCP5GO264I3NAlIaUUpRoFUupaBZHQMRHB8cuJ1t1fZQoaAZoCWgPQwjGia92FKdCQJSGlFKUaBVLZWgWR0DERxTi2lVMdX2UKGgGaAloD0MIe75muWwDdECUhpRSlGgVS8JoFkdAxEcb3RG+bnV9lChoBmgJaA9DCAL0+/4NAHNAlIaUUpRoFUu/aBZHQMRHIu0kWyl1fZQoaAZoCWgPQwg1KnCyDaFxQJSGlFKUaBVLhWgWR0DERyOZssQNdX2UKGgGaAloD0MI6bXZWEnkcUCUhpRSlGgVS5NoFkdAxEcnanrIHXV9lChoBmgJaA9DCFHc8SY/IXJAlIaUUpRoFUvLaBZHQMRHLTj/+851fZQoaAZoCWgPQwgBTYQNjwx0QJSGlFKUaBVLrmgWR0DER0naDf3wdX2UKGgGaAloD0MISG+4j5xwc0CUhpRSlGgVS6xoFkdAxEdN2IO6NHV9lChoBmgJaA9DCB6mfXP/FXRAlIaUUpRoFUvBaBZHQMRHUDAJswd1fZQoaAZoCWgPQwiA1vz4S8FEQJSGlFKUaBVLbWgWR0DER1Q+OfdzdX2UKGgGaAloD0MIpyOAm4UMcUCUhpRSlGgVS6toFkdAxEdVd1uBMHV9lChoBmgJaA9DCIG0/wHWB3NAlIaUUpRoFUu6aBZHQMRHVwoLG711fZQoaAZoCWgPQwhWRiOfVyJyQJSGlFKUaBVLvGgWR0DER1fC66J7dX2UKGgGaAloD0MI5BOy87YtcUCUhpRSlGgVS6hoFkdAxEdbuwX67HV9lChoBmgJaA9DCB6oUx6d6nNAlIaUUpRoFUuwaBZHQMRHXrlmvnt1fZQoaAZoCWgPQwgZrDjVGrxxQJSGlFKUaBVLm2gWR0DER19xyXD4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6110, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Thu Apr 6 11:02:12 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.8.0", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea252a99c1ff78fe7f3f4d54f47783594e08f92dee45aeffdcd70194bf2594b3
|
3 |
+
size 147366
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,29 +4,29 @@
|
|
4 |
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
@@ -35,7 +35,7 @@
|
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
39 |
},
|
40 |
"_last_episode_starts": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,17 +45,17 @@
|
|
45 |
"_episode_num": 0,
|
46 |
"use_sde": false,
|
47 |
"sde_sample_freq": -1,
|
48 |
-
"_current_progress_remaining": -
|
49 |
"_stats_window_size": 100,
|
50 |
"ep_info_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
-
":serialized:": "
|
53 |
},
|
54 |
"ep_success_buffer": {
|
55 |
":type:": "<class 'collections.deque'>",
|
56 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
},
|
58 |
-
"_n_updates":
|
59 |
"observation_space": {
|
60 |
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
|
|
4 |
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x721cf6b1b950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x721cf6b1b9e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x721cf6b1ba70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x721cf6b1bb00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x721cf6b1bb90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x721cf6b1bc20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x721cf6b1bcb0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x721cf6b1bd40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x721cf6b1bdd0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x721cf6b1be60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x721cf6b1bef0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x721cf6b1bf80>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x721cf6af3180>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 10010624,
|
25 |
+
"_total_timesteps": 10000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1681288904830902892,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
|
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAzXx7PGcQsT9uAR8+dHB4vimrjrwuUA69AAAAAAAAAAAzXS+8Nq0rvN7HFL259E097DGcvW+eIz4AAIA/AACAP5pZrzuPNi665kNJvWDNlrgSRdq6rdEHOAAAgD8AAIA/ZlOYvFRNZT8uoUK9EruNv/LyjL0yt3C9AAAAAAAAAABNecc9WkSCP75Olj6b2U2/C6+OPs5XgT4AAAAAAAAAADOHwTukQGq5LtV1vZqzJ7PxIJS6eSBGMwAAgD8AAIA/MysaO4X78bknOZMzelkDL3ddITsu5cizAACAPwAAgD8afCG9xcyQP9YIEb6WNUy/OLZhvsXeUL0AAAAAAAAAAJqbIzz/uLQ/XLa6Pb6sBL6Velq88DqqvAAAAAAAAAAATS2VvTDalT9tiL++pZFXv4DQE76xUrS+AAAAAAAAAAAm2RY+Kk1aPxMxAT6VQlS/e8vBPky6CT4AAAAAAAAAALOhwj1bSXU/gyGIPp3WX79MI2c+wGhrPgAAAAAAAAAAZttzPRK1Tz/LEuE90Gxuv587Hz4q2DM8AAAAAAAAAADNPM47SW00PSnPqrw1kry+HOLpPdJsuj0AAAAAAAAAAJq8QT4dKXc/xpeRPqKFML+q9/o+ysUOPgAAAAAAAAAAmu88vRQUk7o6MCI8j8jVuHE2eLqa6Me3AACAPwAAgD+UdJRiLg=="
|
39 |
},
|
40 |
"_last_episode_starts": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_episode_num": 0,
|
46 |
"use_sde": false,
|
47 |
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
49 |
"_stats_window_size": 100,
|
50 |
"ep_info_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gASVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKlWi7O08dECUhpRSlIwBbJRLyYwBdJRHQMRFJUqx1Pp1fZQoaAZoCWgPQwj260533mFzQJSGlFKUaBVLuWgWR0DERSp5s0pFdX2UKGgGaAloD0MISNxj6UMLc0CUhpRSlGgVS6poFkdAxEUqjDbaiHV9lChoBmgJaA9DCPRtwVKdw3FAlIaUUpRoFUuHaBZHQMRFMNmUW2x1fZQoaAZoCWgPQwgz/n3GhZtyQJSGlFKUaBVLtGgWR0DERTVhy8zzdX2UKGgGaAloD0MI9lymJgGPckCUhpRSlGgVS7loFkdAxEU5PqLS/nV9lChoBmgJaA9DCBNJ9DLK8nFAlIaUUpRoFUuqaBZHQMRFQ6vJRwZ1fZQoaAZoCWgPQwh+OEiIcrJwQJSGlFKUaBVLm2gWR0DERUpR8+ibdX2UKGgGaAloD0MIW88Qjllkc0CUhpRSlGgVS7BoFkdAxEVK01IiDHV9lChoBmgJaA9DCM4ZUdrbIHBAlIaUUpRoFUusaBZHQMRFU2Lgn+h1fZQoaAZoCWgPQwh2/1iITpNwQJSGlFKUaBVLpGgWR0DERVs/bCaadX2UKGgGaAloD0MIkBSRYdWZckCUhpRSlGgVS5FoFkdAxEVbS2H+InV9lChoBmgJaA9DCIJUih1NpHFAlIaUUpRoFUuZaBZHQMRFYwIUrTZ1fZQoaAZoCWgPQwiELAsmvgBzQJSGlFKUaBVLkGgWR0DERWqbWmP6dX2UKGgGaAloD0MIqU2c3K8ucECUhpRSlGgVS5poFkdAxEWCAbQ1JnV9lChoBmgJaA9DCBIwurz5ZnFAlIaUUpRoFUujaBZHQMRFgsFEAo51fZQoaAZoCWgPQwjnOSLfJXlvQJSGlFKUaBVLkGgWR0DERYLDdgv2dX2UKGgGaAloD0MI4Xt/g3ZScECUhpRSlGgVS6FoFkdAxEWGh5gPVnV9lChoBmgJaA9DCLByaJGtNHNAlIaUUpRoFUvaaBZHQMRFjZprULF1fZQoaAZoCWgPQwhb0HtjCAZ0QJSGlFKUaBVLr2gWR0DERZlA1NxmdX2UKGgGaAloD0MIYVRSJ2Bmc0CUhpRSlGgVS61oFkdAxEWb58jRlnV9lChoBmgJaA9DCFfQtMQK+3BAlIaUUpRoFUuSaBZHQMRFnoSL61t1fZQoaAZoCWgPQwjeq1YmvIZwQJSGlFKUaBVLp2gWR0DERaNAVwgldX2UKGgGaAloD0MIrP2d7dHtckCUhpRSlGgVS6VoFkdAxEWo7aqS5nV9lChoBmgJaA9DCIaSyakdb3JAlIaUUpRoFUuHaBZHQMRFqO7xusN1fZQoaAZoCWgPQwh1dcdi2w9zQJSGlFKUaBVLt2gWR0DERbty3kPudX2UKGgGaAloD0MIV+iDZexFcUCUhpRSlGgVS5NoFkdAxEW+D1XeWXV9lChoBmgJaA9DCGDMlqwKSnNAlIaUUpRoFUujaBZHQMRFv8Gs3hp1fZQoaAZoCWgPQwj7lGOyuDNGQJSGlFKUaBVLeGgWR0DERcY3FUADdX2UKGgGaAloD0MItRmnIao5ckCUhpRSlGgVS75oFkdAxEXHtIClrXV9lChoBmgJaA9DCOihtg0jGHFAlIaUUpRoFUugaBZHQMRF3I4VARl1fZQoaAZoCWgPQwgpB7MJcL9xQJSGlFKUaBVLsGgWR0DERemvt+kQdX2UKGgGaAloD0MIJSL8i6BlckCUhpRSlGgVS7hoFkdAxEXqX0Gu93V9lChoBmgJaA9DCF6CUx+IfHBAlIaUUpRoFUuSaBZHQMRF649HMEB1fZQoaAZoCWgPQwj9vn/zYqBxQJSGlFKUaBVLp2gWR0DEReujj7yhdX2UKGgGaAloD0MIOjyE8dP9cECUhpRSlGgVS45oFkdAxEXulMRHw3V9lChoBmgJaA9DCM+/XfarJ3JAlIaUUpRoFUuXaBZHQMRF91awD/51fZQoaAZoCWgPQwhUAmISLm9wQJSGlFKUaBVLlGgWR0DERft/rjYJdX2UKGgGaAloD0MIgV64c+Ehc0CUhpRSlGgVS51oFkdAxEYAFSKm9HV9lChoBmgJaA9DCOntz0XDBXJAlIaUUpRoFUu9aBZHQMRGBF6zE751fZQoaAZoCWgPQwgijQqc7O1xQJSGlFKUaBVLgGgWR0DERgalrM1TdX2UKGgGaAloD0MIk6mCUUllcUCUhpRSlGgVS4toFkdAxEYItWdVenV9lChoBmgJaA9DCJiiXBp/vXBAlIaUUpRoFUuOaBZHQMRGFH8jzI51fZQoaAZoCWgPQwjNrKWANGhyQJSGlFKUaBVLrWgWR0DERh7kXDWLdX2UKGgGaAloD0MI5Lz/j1O8cUCUhpRSlGgVS7doFkdAxEYutdzGP3V9lChoBmgJaA9DCBhd3hyuGHFAlIaUUpRoFUuPaBZHQMRGOjbBXS11fZQoaAZoCWgPQwjRBIpYxAFwQJSGlFKUaBVLk2gWR0DERkGnfl6rdX2UKGgGaAloD0MIrBvvjgydb0CUhpRSlGgVS6hoFkdAxEZLmkFfRnV9lChoBmgJaA9DCD3wMVjxInRAlIaUUpRoFUvBaBZHQMRGS6RISUV1fZQoaAZoCWgPQwiELuHQG8ZyQJSGlFKUaBVLq2gWR0DERkx59mYjdX2UKGgGaAloD0MIOEw0SMHXcUCUhpRSlGgVS7FoFkdAxEZQ9alk6XV9lChoBmgJaA9DCEG2LF9Xy3BAlIaUUpRoFUueaBZHQMRGUxJul411fZQoaAZoCWgPQwh968N6o65yQJSGlFKUaBVLnmgWR0DERmCYG+sYdX2UKGgGaAloD0MIfbJiuLrQc0CUhpRSlGgVS7RoFkdAxEZjppvgnHV9lChoBmgJaA9DCPA1BMflrnJAlIaUUpRoFUutaBZHQMRGZMe4kNZ1fZQoaAZoCWgPQwjYn8TnDq9wQJSGlFKUaBVLkWgWR0DERmn2GqPwdX2UKGgGaAloD0MIR8mrc8wvcUCUhpRSlGgVS5BoFkdAxEZzGz8gp3V9lChoBmgJaA9DCG+ERUWcV3JAlIaUUpRoFUu3aBZHQMRGc5ggHNZ1fZQoaAZoCWgPQwjaqE4H8tRyQJSGlFKUaBVLv2gWR0DERnYFmnO0dX2UKGgGaAloD0MIJzEIrJwZaUCUhpRSlGgVTegDaBZHQMRGeogNgBt1fZQoaAZoCWgPQwimQjwS75pxQJSGlFKUaBVLn2gWR0DERpScPOIJdX2UKGgGaAloD0MIWmd8X5xsckCUhpRSlGgVS79oFkdAxEacFev6j3V9lChoBmgJaA9DCLITXoJTGURAlIaUUpRoFUtpaBZHQMRGnpdjXnR1fZQoaAZoCWgPQwhAbVSnw7dxQJSGlFKUaBVLnGgWR0DERqMWAPNFdX2UKGgGaAloD0MIJ2iTw2dackCUhpRSlGgVS51oFkdAxEakT+vQnnV9lChoBmgJaA9DCNUGJ6IfL3FAlIaUUpRoFUueaBZHQMRGpEHlfZ51fZQoaAZoCWgPQwgzN9+ILgtzQJSGlFKUaBVLu2gWR0DERqtOTJQtdX2UKGgGaAloD0MI6INlbGgtckCUhpRSlGgVS6BoFkdAxEasEidJ8XV9lChoBmgJaA9DCHEFFOrpZ3NAlIaUUpRoFUuuaBZHQMRGsSu6mO51fZQoaAZoCWgPQwixbVFmw5txQJSGlFKUaBVLkGgWR0DERrj8vVVhdX2UKGgGaAloD0MIHottUhHWcUCUhpRSlGgVS59oFkdAxEa7+az/qHV9lChoBmgJaA9DCNtMhXikJXRAlIaUUpRoFUvUaBZHQMRG1jiwSrZ1fZQoaAZoCWgPQwgBGTp20KJzQJSGlFKUaBVLu2gWR0DERtrDMvAXdX2UKGgGaAloD0MIAALWqt1Nc0CUhpRSlGgVS71oFkdAxEbeyzHCGnV9lChoBmgJaA9DCHpuoSvRm3RAlIaUUpRoFUvLaBZHQMRG5H+yZ8d1fZQoaAZoCWgPQwgktybdlg90QJSGlFKUaBVLx2gWR0DERujXg9/0dX2UKGgGaAloD0MI5xvRPWvGcUCUhpRSlGgVS5NoFkdAxEbtu2qkunV9lChoBmgJaA9DCLjoZKk1QXBAlIaUUpRoFUuhaBZHQMRG7oddVvN1fZQoaAZoCWgPQwjjN4WVCgRKQJSGlFKUaBVLeGgWR0DERu7/0dzXdX2UKGgGaAloD0MI+FW5UPm1cUCUhpRSlGgVS5NoFkdAxEb1YywfQ3V9lChoBmgJaA9DCP7Soj4JdXJAlIaUUpRoFUuqaBZHQMRG/Alv60p1fZQoaAZoCWgPQwhOY3st6BVxQJSGlFKUaBVLomgWR0DERv0jcEeRdX2UKGgGaAloD0MICK2HL9Nac0CUhpRSlGgVS6hoFkdAxEb/S0BwM3V9lChoBmgJaA9DCP5GO264I3NAlIaUUpRoFUupaBZHQMRHB8cuJ1t1fZQoaAZoCWgPQwjGia92FKdCQJSGlFKUaBVLZWgWR0DERxTi2lVMdX2UKGgGaAloD0MIe75muWwDdECUhpRSlGgVS8JoFkdAxEcb3RG+bnV9lChoBmgJaA9DCAL0+/4NAHNAlIaUUpRoFUu/aBZHQMRHIu0kWyl1fZQoaAZoCWgPQwg1KnCyDaFxQJSGlFKUaBVLhWgWR0DERyOZssQNdX2UKGgGaAloD0MI6bXZWEnkcUCUhpRSlGgVS5NoFkdAxEcnanrIHXV9lChoBmgJaA9DCFHc8SY/IXJAlIaUUpRoFUvLaBZHQMRHLTj/+851fZQoaAZoCWgPQwgBTYQNjwx0QJSGlFKUaBVLrmgWR0DER0naDf3wdX2UKGgGaAloD0MISG+4j5xwc0CUhpRSlGgVS6xoFkdAxEdN2IO6NHV9lChoBmgJaA9DCB6mfXP/FXRAlIaUUpRoFUvBaBZHQMRHUDAJswd1fZQoaAZoCWgPQwiA1vz4S8FEQJSGlFKUaBVLbWgWR0DER1Q+OfdzdX2UKGgGaAloD0MIpyOAm4UMcUCUhpRSlGgVS6toFkdAxEdVd1uBMHV9lChoBmgJaA9DCIG0/wHWB3NAlIaUUpRoFUu6aBZHQMRHVwoLG711fZQoaAZoCWgPQwhWRiOfVyJyQJSGlFKUaBVLvGgWR0DER1fC66J7dX2UKGgGaAloD0MI5BOy87YtcUCUhpRSlGgVS6hoFkdAxEdbuwX67HV9lChoBmgJaA9DCB6oUx6d6nNAlIaUUpRoFUuwaBZHQMRHXrlmvnt1fZQoaAZoCWgPQwgZrDjVGrxxQJSGlFKUaBVLm2gWR0DER19xyXD4dWUu"
|
53 |
},
|
54 |
"ep_success_buffer": {
|
55 |
":type:": "<class 'collections.deque'>",
|
56 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
},
|
58 |
+
"_n_updates": 6110,
|
59 |
"observation_space": {
|
60 |
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f111a4cc5d7505febdc30efeceab9e56c25796733204799b229451c7bbb7990
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:353fea51c7e92c8e68169353a64e48474e30624e353dbfb6e1fcc02fb0d9a2f0
|
3 |
+
size 43329
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
- OS: Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Thu Apr 6 11:02:12 UTC 2023
|
2 |
- Python: 3.7.12
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
-
- PyTorch: 1.13.0
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
|
|
1 |
- OS: Linux-5.15.90+-x86_64-with-debian-bullseye-sid # 1 SMP Thu Apr 6 11:02:12 UTC 2023
|
2 |
- Python: 3.7.12
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 1.13.0
|
5 |
+
- GPU Enabled: True
|
6 |
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 289.87285438294987, "std_reward": 20.17074443016875, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T11:35:00.544751"}
|