|
|
|
|
|
import gradio as gr |
|
import torch |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
|
|
|
|
model_path = 'brunosan/GPT2-impactscience' |
|
tokenizer_path = 'brunosan/GPT2-impactscience' |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path) |
|
model = GPT2LMHeadModel.from_pretrained(model_path).to(device) |
|
|
|
|
|
def generate_text(prompt): |
|
|
|
prompt = prompt.rstrip() |
|
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device) |
|
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device) |
|
outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask, |
|
max_length=100, num_beams=9, |
|
no_repeat_ngram_size=2, |
|
temperature=1.0, do_sample=True, |
|
top_p=0.95, top_k=50) |
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return generated_text |
|
|
|
|
|
input_text = gr.inputs.Textbox(lines=2, label="Enter the starting text") |
|
output_text = gr.outputs.Textbox(label="Generated Text") |
|
|
|
interface = gr.Interface(fn=generate_text, inputs=input_text, outputs=output_text, |
|
title="GPT-2 Impact Science Text Generator", description="Generate text using a fine-tuned GPT-2 model onthe Impact Science book.") |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|