GPT2-impactscience / gradio_interface.py
brunosan's picture
Upload gradio_interface.py
8a00478
#inference Gradio
import gradio as gr
import torch
from transformers import GPT2LMHeadModel, GPT2Tokenizer
# Load the fine-tuned model and tokenizer
model_path = 'brunosan/GPT2-impactscience'
tokenizer_path = 'brunosan/GPT2-impactscience'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = GPT2Tokenizer.from_pretrained(tokenizer_path)
model = GPT2LMHeadModel.from_pretrained(model_path).to(device)
# Define the generation function
def generate_text(prompt):
#remove trailing space if any
prompt = prompt.rstrip()
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=device)
outputs = model.generate(input_ids=input_ids, attention_mask=attention_mask,
max_length=100, num_beams=9,
no_repeat_ngram_size=2,
temperature=1.0, do_sample=True,
top_p=0.95, top_k=50)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
# Create a Gradio interface
input_text = gr.inputs.Textbox(lines=2, label="Enter the starting text")
output_text = gr.outputs.Textbox(label="Generated Text")
interface = gr.Interface(fn=generate_text, inputs=input_text, outputs=output_text,
title="GPT-2 Impact Science Text Generator", description="Generate text using a fine-tuned GPT-2 model onthe Impact Science book.")
if __name__ == "__main__":
interface.launch()