update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: GPT2_v5
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# GPT2_v5
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.7670
|
23 |
+
- Precision: 0.7725
|
24 |
+
- Recall: 0.8367
|
25 |
+
- F1: 0.4733
|
26 |
+
- Accuracy: 0.7646
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 1
|
47 |
+
- eval_batch_size: 1
|
48 |
+
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 8
|
50 |
+
- total_train_batch_size: 8
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- num_epochs: 7
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
60 |
+
| 1.2212 | 1.0 | 1012 | 0.7874 | 0.7557 | 0.7560 | 0.4041 | 0.7150 |
|
61 |
+
| 0.7162 | 2.0 | 2024 | 0.7007 | 0.7495 | 0.8714 | 0.4855 | 0.7647 |
|
62 |
+
| 0.6241 | 3.0 | 3036 | 0.6799 | 0.7681 | 0.8532 | 0.4804 | 0.7702 |
|
63 |
+
| 0.5545 | 4.0 | 4048 | 0.6997 | 0.7635 | 0.8658 | 0.4814 | 0.7714 |
|
64 |
+
| 0.4963 | 5.0 | 5060 | 0.7186 | 0.7696 | 0.8470 | 0.4764 | 0.7669 |
|
65 |
+
| 0.449 | 6.0 | 6072 | 0.7436 | 0.7711 | 0.8382 | 0.4731 | 0.7644 |
|
66 |
+
| 0.4182 | 7.0 | 7084 | 0.7670 | 0.7725 | 0.8367 | 0.4733 | 0.7646 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.18.0
|
72 |
+
- Pytorch 1.10.0+cu111
|
73 |
+
- Datasets 2.1.0
|
74 |
+
- Tokenizers 0.12.1
|