trained on the initial 100k + 100k
Browse files- 1_Pooling/config.json +10 -0
- README.md +523 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +55 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:300000
|
10 |
+
- loss:DenoisingAutoEncoderLoss
|
11 |
+
base_model: intfloat/e5-base-unsupervised
|
12 |
+
datasets: []
|
13 |
+
metrics:
|
14 |
+
- pearson_cosine
|
15 |
+
- spearman_cosine
|
16 |
+
- pearson_manhattan
|
17 |
+
- spearman_manhattan
|
18 |
+
- pearson_euclidean
|
19 |
+
- spearman_euclidean
|
20 |
+
- pearson_dot
|
21 |
+
- spearman_dot
|
22 |
+
- pearson_max
|
23 |
+
- spearman_max
|
24 |
+
widget:
|
25 |
+
- source_sentence: One mole of a substance of substance such atoms or). The is known
|
26 |
+
or Avogadro's constant
|
27 |
+
sentences:
|
28 |
+
- how effective are birth control pills and pulling out?
|
29 |
+
- can pvc be phthalate free?
|
30 |
+
- One mole of a substance is equal to 6.022 × 10²³ units of that substance (such
|
31 |
+
as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's
|
32 |
+
number or Avogadro's constant.
|
33 |
+
- source_sentence: is the difference between disability broadly defined a or to be
|
34 |
+
significantly impaired relative to the standard an individual group . To the term
|
35 |
+
disabled still just more, this or function
|
36 |
+
sentences:
|
37 |
+
- 'how to open pkf format? On a Windows PC, right-click the file, click "Properties",
|
38 |
+
then look under “Type of File.” On a Mac computer, right-click the file, click
|
39 |
+
“More Info,” then look under “Kind”. Tip: If it''s the PKF file extension, it
|
40 |
+
probably falls under the Audio Files type, so any program used for Audio Files
|
41 |
+
should open your PKF file.'
|
42 |
+
- When someone dreams you died, it means that whatever you mean to that person's
|
43 |
+
psychological state of mind 'has ended' or 'is absent'. ... People dream of dead
|
44 |
+
people because they miss something about them that was very strong emotionally
|
45 |
+
present when they were there, yet is missing in their daily-life now.
|
46 |
+
- what is the difference between disability and disabled? A disability is broadly
|
47 |
+
defined as a condition or function judged to be significantly impaired relative
|
48 |
+
to the usual standard of an individual or group. ... To most people today the
|
49 |
+
term "disabled" still means just that, and, more broadly, means "unable to perform"
|
50 |
+
this or that physical or mental function.
|
51 |
+
- source_sentence: how you contagious when
|
52 |
+
sentences:
|
53 |
+
- how long are you contagious when you have rsv?
|
54 |
+
- With WiFi on your camera you establish a wireless connection between your camera
|
55 |
+
and your phone, tablet, computer, or printer. It's also possible to connect two
|
56 |
+
cameras with each other via WiFi. The camera has its own WiFi network that transmits
|
57 |
+
signals.
|
58 |
+
- So, what does it mean when a guy looks you up and down? It will often mean that
|
59 |
+
he is checking you out especially if he only does it to you and he shows other
|
60 |
+
signs of attraction when around you. It can also be that he is initially observing
|
61 |
+
to see if you're a threat or that he is observing your outfit.
|
62 |
+
- source_sentence: you light east while is you can the of the . understanding The
|
63 |
+
on left is basically fajr time black you
|
64 |
+
sentences:
|
65 |
+
- A future - contract to buy (or sell) something in the future. An option - right
|
66 |
+
BUT NOT the obligation to buy (or sell) something in the future. A swap - two
|
67 |
+
parties exchanging something at agreed points in time. This could be an exchange
|
68 |
+
of currencies, of returns on assets, of different interest rate returns, etc..
|
69 |
+
- can i connect my iphone to my windows laptop? You can sync an iPhone with a Windows
|
70 |
+
10 computer wirelessly (over your local WiFi network) or via the Lightning cable.
|
71 |
+
... Open iTunes in Windows 10. Plug your iPhone (or iPad or iPod) into the computer
|
72 |
+
using a Lightning cable (or older 30-pin connector). Click on Device in iTunes
|
73 |
+
and choose your iPhone.
|
74 |
+
- 'Yes, Fajr is when you can see the light in the east while Sunrise is when you
|
75 |
+
can see the disk of the sun. For those who have a trouble understanding: The blue
|
76 |
+
area on the left is basically fajr time. The black area is when you can eat.'
|
77 |
+
- source_sentence: should eat diarrhea should solid as soon able you're bottle your
|
78 |
+
have, try to them as . at home until 48 last spreading others.
|
79 |
+
sentences:
|
80 |
+
- which countries were not affected by world war 2? There were eight countries that
|
81 |
+
declared neutrality; Portugal, Switzerland, Spain, Sweden, The Vatican, Andorra,
|
82 |
+
Ireland and Liechtenstein. However, all of these countries were still involved
|
83 |
+
in small ways.
|
84 |
+
- how to copy multiple cells in excel and paste?
|
85 |
+
- how long should you wait to eat after having diarrhea? You should eat solid food
|
86 |
+
as soon as you feel able to. If you're breastfeeding or bottle feeding your baby
|
87 |
+
and they have diarrhoea, you should try to feed them as normal. Stay at home until
|
88 |
+
at least 48 hours after the last episode of diarrhoea to prevent spreading any
|
89 |
+
infection to others.
|
90 |
+
pipeline_tag: sentence-similarity
|
91 |
+
model-index:
|
92 |
+
- name: SentenceTransformer based on intfloat/e5-base-unsupervised
|
93 |
+
results:
|
94 |
+
- task:
|
95 |
+
type: semantic-similarity
|
96 |
+
name: Semantic Similarity
|
97 |
+
dataset:
|
98 |
+
name: sts test
|
99 |
+
type: sts-test
|
100 |
+
metrics:
|
101 |
+
- type: pearson_cosine
|
102 |
+
value: 0.7707098586060571
|
103 |
+
name: Pearson Cosine
|
104 |
+
- type: spearman_cosine
|
105 |
+
value: 0.7583632499035035
|
106 |
+
name: Spearman Cosine
|
107 |
+
- type: pearson_manhattan
|
108 |
+
value: 0.7590199401674214
|
109 |
+
name: Pearson Manhattan
|
110 |
+
- type: spearman_manhattan
|
111 |
+
value: 0.747524480818435
|
112 |
+
name: Spearman Manhattan
|
113 |
+
- type: pearson_euclidean
|
114 |
+
value: 0.760482148803808
|
115 |
+
name: Pearson Euclidean
|
116 |
+
- type: spearman_euclidean
|
117 |
+
value: 0.7488744991502696
|
118 |
+
name: Spearman Euclidean
|
119 |
+
- type: pearson_dot
|
120 |
+
value: 0.5774036226110284
|
121 |
+
name: Pearson Dot
|
122 |
+
- type: spearman_dot
|
123 |
+
value: 0.5600384269062831
|
124 |
+
name: Spearman Dot
|
125 |
+
- type: pearson_max
|
126 |
+
value: 0.7707098586060571
|
127 |
+
name: Pearson Max
|
128 |
+
- type: spearman_max
|
129 |
+
value: 0.7583632499035035
|
130 |
+
name: Spearman Max
|
131 |
+
---
|
132 |
+
|
133 |
+
# SentenceTransformer based on intfloat/e5-base-unsupervised
|
134 |
+
|
135 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base-unsupervised](https://huggingface.co/intfloat/e5-base-unsupervised). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
136 |
+
|
137 |
+
## Model Details
|
138 |
+
|
139 |
+
### Model Description
|
140 |
+
- **Model Type:** Sentence Transformer
|
141 |
+
- **Base model:** [intfloat/e5-base-unsupervised](https://huggingface.co/intfloat/e5-base-unsupervised) <!-- at revision 6003a5b7ce770b0549203e41115b9fc683f16dad -->
|
142 |
+
- **Maximum Sequence Length:** 512 tokens
|
143 |
+
- **Output Dimensionality:** 768 tokens
|
144 |
+
- **Similarity Function:** Cosine Similarity
|
145 |
+
<!-- - **Training Dataset:** Unknown -->
|
146 |
+
<!-- - **Language:** Unknown -->
|
147 |
+
<!-- - **License:** Unknown -->
|
148 |
+
|
149 |
+
### Model Sources
|
150 |
+
|
151 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
152 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
153 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
154 |
+
|
155 |
+
### Full Model Architecture
|
156 |
+
|
157 |
+
```
|
158 |
+
SentenceTransformer(
|
159 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
160 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
161 |
+
)
|
162 |
+
```
|
163 |
+
|
164 |
+
## Usage
|
165 |
+
|
166 |
+
### Direct Usage (Sentence Transformers)
|
167 |
+
|
168 |
+
First install the Sentence Transformers library:
|
169 |
+
|
170 |
+
```bash
|
171 |
+
pip install -U sentence-transformers
|
172 |
+
```
|
173 |
+
|
174 |
+
Then you can load this model and run inference.
|
175 |
+
```python
|
176 |
+
from sentence_transformers import SentenceTransformer
|
177 |
+
|
178 |
+
# Download from the 🤗 Hub
|
179 |
+
model = SentenceTransformer("bobox/E5-base-unsupervised-TSDAE")
|
180 |
+
# Run inference
|
181 |
+
sentences = [
|
182 |
+
"should eat diarrhea should solid as soon able you're bottle your have, try to them as . at home until 48 last spreading others.",
|
183 |
+
"how long should you wait to eat after having diarrhea? You should eat solid food as soon as you feel able to. If you're breastfeeding or bottle feeding your baby and they have diarrhoea, you should try to feed them as normal. Stay at home until at least 48 hours after the last episode of diarrhoea to prevent spreading any infection to others.",
|
184 |
+
'how to copy multiple cells in excel and paste?',
|
185 |
+
]
|
186 |
+
embeddings = model.encode(sentences)
|
187 |
+
print(embeddings.shape)
|
188 |
+
# [3, 768]
|
189 |
+
|
190 |
+
# Get the similarity scores for the embeddings
|
191 |
+
similarities = model.similarity(embeddings, embeddings)
|
192 |
+
print(similarities.shape)
|
193 |
+
# [3, 3]
|
194 |
+
```
|
195 |
+
|
196 |
+
<!--
|
197 |
+
### Direct Usage (Transformers)
|
198 |
+
|
199 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
200 |
+
|
201 |
+
</details>
|
202 |
+
-->
|
203 |
+
|
204 |
+
<!--
|
205 |
+
### Downstream Usage (Sentence Transformers)
|
206 |
+
|
207 |
+
You can finetune this model on your own dataset.
|
208 |
+
|
209 |
+
<details><summary>Click to expand</summary>
|
210 |
+
|
211 |
+
</details>
|
212 |
+
-->
|
213 |
+
|
214 |
+
<!--
|
215 |
+
### Out-of-Scope Use
|
216 |
+
|
217 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
218 |
+
-->
|
219 |
+
|
220 |
+
## Evaluation
|
221 |
+
|
222 |
+
### Metrics
|
223 |
+
|
224 |
+
#### Semantic Similarity
|
225 |
+
* Dataset: `sts-test`
|
226 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
227 |
+
|
228 |
+
| Metric | Value |
|
229 |
+
|:--------------------|:-----------|
|
230 |
+
| pearson_cosine | 0.7707 |
|
231 |
+
| **spearman_cosine** | **0.7584** |
|
232 |
+
| pearson_manhattan | 0.759 |
|
233 |
+
| spearman_manhattan | 0.7475 |
|
234 |
+
| pearson_euclidean | 0.7605 |
|
235 |
+
| spearman_euclidean | 0.7489 |
|
236 |
+
| pearson_dot | 0.5774 |
|
237 |
+
| spearman_dot | 0.56 |
|
238 |
+
| pearson_max | 0.7707 |
|
239 |
+
| spearman_max | 0.7584 |
|
240 |
+
|
241 |
+
<!--
|
242 |
+
## Bias, Risks and Limitations
|
243 |
+
|
244 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
245 |
+
-->
|
246 |
+
|
247 |
+
<!--
|
248 |
+
### Recommendations
|
249 |
+
|
250 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
251 |
+
-->
|
252 |
+
|
253 |
+
## Training Details
|
254 |
+
|
255 |
+
### Training Dataset
|
256 |
+
|
257 |
+
#### Unnamed Dataset
|
258 |
+
|
259 |
+
|
260 |
+
* Size: 300,000 training samples
|
261 |
+
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
|
262 |
+
* Approximate statistics based on the first 1000 samples:
|
263 |
+
| | sentence_0 | sentence_1 |
|
264 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
265 |
+
| type | string | string |
|
266 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 20.46 tokens</li><li>max: 69 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 47.85 tokens</li><li>max: 132 tokens</li></ul> |
|
267 |
+
* Samples:
|
268 |
+
| sentence_0 | sentence_1 |
|
269 |
+
|:-------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
270 |
+
| <code>matter An unit of retains all subatomic neutrons Hydrogen (one one neutrons</code> | <code>are particles of matter atoms? An atom is the smallest unit of matter that retains all of the chemical properties of an element. ... Most atoms contain all three of these types of subatomic particles—protons, electrons, and neutrons. Hydrogen (H) is an exception because it typically has one proton and one electron, but no neutrons.</code> |
|
271 |
+
| <code>equals how</code> | <code>5 ml equals how many ounces?</code> |
|
272 |
+
| <code>"A Country Boy School is poor is forced to its boy to school following official, ignoring mean a jail</code> | <code>"A Country Boy Quits School" by Lao Hsiang is an endearing social satire. It is about a poor Chinese family which is forced to send its boy to school following an official proclamation, ignoring which would mean a jail term.</code> |
|
273 |
+
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
|
274 |
+
|
275 |
+
### Training Hyperparameters
|
276 |
+
#### Non-Default Hyperparameters
|
277 |
+
|
278 |
+
- `eval_strategy`: steps
|
279 |
+
- `per_device_train_batch_size`: 14
|
280 |
+
- `per_device_eval_batch_size`: 14
|
281 |
+
- `num_train_epochs`: 1
|
282 |
+
- `multi_dataset_batch_sampler`: round_robin
|
283 |
+
|
284 |
+
#### All Hyperparameters
|
285 |
+
<details><summary>Click to expand</summary>
|
286 |
+
|
287 |
+
- `overwrite_output_dir`: False
|
288 |
+
- `do_predict`: False
|
289 |
+
- `eval_strategy`: steps
|
290 |
+
- `prediction_loss_only`: True
|
291 |
+
- `per_device_train_batch_size`: 14
|
292 |
+
- `per_device_eval_batch_size`: 14
|
293 |
+
- `per_gpu_train_batch_size`: None
|
294 |
+
- `per_gpu_eval_batch_size`: None
|
295 |
+
- `gradient_accumulation_steps`: 1
|
296 |
+
- `eval_accumulation_steps`: None
|
297 |
+
- `learning_rate`: 5e-05
|
298 |
+
- `weight_decay`: 0.0
|
299 |
+
- `adam_beta1`: 0.9
|
300 |
+
- `adam_beta2`: 0.999
|
301 |
+
- `adam_epsilon`: 1e-08
|
302 |
+
- `max_grad_norm`: 1
|
303 |
+
- `num_train_epochs`: 1
|
304 |
+
- `max_steps`: -1
|
305 |
+
- `lr_scheduler_type`: linear
|
306 |
+
- `lr_scheduler_kwargs`: {}
|
307 |
+
- `warmup_ratio`: 0.0
|
308 |
+
- `warmup_steps`: 0
|
309 |
+
- `log_level`: passive
|
310 |
+
- `log_level_replica`: warning
|
311 |
+
- `log_on_each_node`: True
|
312 |
+
- `logging_nan_inf_filter`: True
|
313 |
+
- `save_safetensors`: True
|
314 |
+
- `save_on_each_node`: False
|
315 |
+
- `save_only_model`: False
|
316 |
+
- `restore_callback_states_from_checkpoint`: False
|
317 |
+
- `no_cuda`: False
|
318 |
+
- `use_cpu`: False
|
319 |
+
- `use_mps_device`: False
|
320 |
+
- `seed`: 42
|
321 |
+
- `data_seed`: None
|
322 |
+
- `jit_mode_eval`: False
|
323 |
+
- `use_ipex`: False
|
324 |
+
- `bf16`: False
|
325 |
+
- `fp16`: False
|
326 |
+
- `fp16_opt_level`: O1
|
327 |
+
- `half_precision_backend`: auto
|
328 |
+
- `bf16_full_eval`: False
|
329 |
+
- `fp16_full_eval`: False
|
330 |
+
- `tf32`: None
|
331 |
+
- `local_rank`: 0
|
332 |
+
- `ddp_backend`: None
|
333 |
+
- `tpu_num_cores`: None
|
334 |
+
- `tpu_metrics_debug`: False
|
335 |
+
- `debug`: []
|
336 |
+
- `dataloader_drop_last`: False
|
337 |
+
- `dataloader_num_workers`: 0
|
338 |
+
- `dataloader_prefetch_factor`: None
|
339 |
+
- `past_index`: -1
|
340 |
+
- `disable_tqdm`: False
|
341 |
+
- `remove_unused_columns`: True
|
342 |
+
- `label_names`: None
|
343 |
+
- `load_best_model_at_end`: False
|
344 |
+
- `ignore_data_skip`: False
|
345 |
+
- `fsdp`: []
|
346 |
+
- `fsdp_min_num_params`: 0
|
347 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
348 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
349 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
350 |
+
- `deepspeed`: None
|
351 |
+
- `label_smoothing_factor`: 0.0
|
352 |
+
- `optim`: adamw_torch
|
353 |
+
- `optim_args`: None
|
354 |
+
- `adafactor`: False
|
355 |
+
- `group_by_length`: False
|
356 |
+
- `length_column_name`: length
|
357 |
+
- `ddp_find_unused_parameters`: None
|
358 |
+
- `ddp_bucket_cap_mb`: None
|
359 |
+
- `ddp_broadcast_buffers`: False
|
360 |
+
- `dataloader_pin_memory`: True
|
361 |
+
- `dataloader_persistent_workers`: False
|
362 |
+
- `skip_memory_metrics`: True
|
363 |
+
- `use_legacy_prediction_loop`: False
|
364 |
+
- `push_to_hub`: False
|
365 |
+
- `resume_from_checkpoint`: None
|
366 |
+
- `hub_model_id`: None
|
367 |
+
- `hub_strategy`: every_save
|
368 |
+
- `hub_private_repo`: False
|
369 |
+
- `hub_always_push`: False
|
370 |
+
- `gradient_checkpointing`: False
|
371 |
+
- `gradient_checkpointing_kwargs`: None
|
372 |
+
- `include_inputs_for_metrics`: False
|
373 |
+
- `eval_do_concat_batches`: True
|
374 |
+
- `fp16_backend`: auto
|
375 |
+
- `push_to_hub_model_id`: None
|
376 |
+
- `push_to_hub_organization`: None
|
377 |
+
- `mp_parameters`:
|
378 |
+
- `auto_find_batch_size`: False
|
379 |
+
- `full_determinism`: False
|
380 |
+
- `torchdynamo`: None
|
381 |
+
- `ray_scope`: last
|
382 |
+
- `ddp_timeout`: 1800
|
383 |
+
- `torch_compile`: False
|
384 |
+
- `torch_compile_backend`: None
|
385 |
+
- `torch_compile_mode`: None
|
386 |
+
- `dispatch_batches`: None
|
387 |
+
- `split_batches`: None
|
388 |
+
- `include_tokens_per_second`: False
|
389 |
+
- `include_num_input_tokens_seen`: False
|
390 |
+
- `neftune_noise_alpha`: None
|
391 |
+
- `optim_target_modules`: None
|
392 |
+
- `batch_eval_metrics`: False
|
393 |
+
- `batch_sampler`: batch_sampler
|
394 |
+
- `multi_dataset_batch_sampler`: round_robin
|
395 |
+
|
396 |
+
</details>
|
397 |
+
|
398 |
+
### Training Logs
|
399 |
+
| Epoch | Step | Training Loss | sts-test_spearman_cosine |
|
400 |
+
|:------:|:-----:|:-------------:|:------------------------:|
|
401 |
+
| 0 | 0 | - | 0.7211 |
|
402 |
+
| 0.0233 | 500 | 6.3144 | - |
|
403 |
+
| 0.0467 | 1000 | 5.3949 | - |
|
404 |
+
| 0.0500 | 1072 | - | 0.6820 |
|
405 |
+
| 0.0700 | 1500 | 5.0531 | - |
|
406 |
+
| 0.0933 | 2000 | 4.8547 | - |
|
407 |
+
| 0.1001 | 2144 | - | 0.7126 |
|
408 |
+
| 0.1167 | 2500 | 4.7058 | - |
|
409 |
+
| 0.1400 | 3000 | 4.5771 | - |
|
410 |
+
| 0.1501 | 3216 | - | 0.7290 |
|
411 |
+
| 0.1633 | 3500 | 4.4591 | - |
|
412 |
+
| 0.1867 | 4000 | 4.3502 | - |
|
413 |
+
| 0.2001 | 4288 | - | 0.7351 |
|
414 |
+
| 0.2100 | 4500 | 4.3071 | - |
|
415 |
+
| 0.2333 | 5000 | 4.2042 | - |
|
416 |
+
| 0.2501 | 5360 | - | 0.7464 |
|
417 |
+
| 0.2567 | 5500 | 4.1657 | - |
|
418 |
+
| 0.2800 | 6000 | 4.1111 | - |
|
419 |
+
| 0.3002 | 6432 | - | 0.7492 |
|
420 |
+
| 0.3033 | 6500 | 4.045 | - |
|
421 |
+
| 0.3267 | 7000 | 4.017 | - |
|
422 |
+
| 0.3500 | 7500 | 3.9651 | - |
|
423 |
+
| 0.3502 | 7504 | - | 0.7554 |
|
424 |
+
| 0.3733 | 8000 | 3.9199 | - |
|
425 |
+
| 0.3967 | 8500 | 3.8691 | - |
|
426 |
+
| 0.4002 | 8576 | - | 0.7517 |
|
427 |
+
| 0.4200 | 9000 | 3.8563 | - |
|
428 |
+
| 0.4433 | 9500 | 3.815 | - |
|
429 |
+
| 0.4502 | 9648 | - | 0.7540 |
|
430 |
+
| 0.4667 | 10000 | 3.7892 | - |
|
431 |
+
| 0.4900 | 10500 | 3.7543 | - |
|
432 |
+
| 0.5003 | 10720 | - | 0.7585 |
|
433 |
+
| 0.5133 | 11000 | 3.7391 | - |
|
434 |
+
| 0.5367 | 11500 | 3.7442 | - |
|
435 |
+
| 0.5503 | 11792 | - | 0.7587 |
|
436 |
+
| 0.5600 | 12000 | 3.7187 | - |
|
437 |
+
| 0.5833 | 12500 | 3.6855 | - |
|
438 |
+
| 0.6003 | 12864 | - | 0.7572 |
|
439 |
+
| 0.6067 | 13000 | 3.6751 | - |
|
440 |
+
| 0.6300 | 13500 | 3.6373 | - |
|
441 |
+
| 0.6503 | 13936 | - | 0.7574 |
|
442 |
+
| 0.6533 | 14000 | 3.6292 | - |
|
443 |
+
| 0.6767 | 14500 | 3.6277 | - |
|
444 |
+
| 0.7000 | 15000 | 3.6084 | - |
|
445 |
+
| 0.7004 | 15008 | - | 0.7575 |
|
446 |
+
| 0.7233 | 15500 | 3.6103 | - |
|
447 |
+
| 0.7467 | 16000 | 3.5953 | - |
|
448 |
+
| 0.7504 | 16080 | - | 0.7576 |
|
449 |
+
| 0.7700 | 16500 | 3.6232 | - |
|
450 |
+
| 0.7933 | 17000 | 3.5741 | - |
|
451 |
+
| 0.8004 | 17152 | - | 0.7583 |
|
452 |
+
| 0.8167 | 17500 | 3.5639 | - |
|
453 |
+
| 0.8400 | 18000 | 3.5667 | - |
|
454 |
+
| 0.8504 | 18224 | - | 0.7589 |
|
455 |
+
| 0.8633 | 18500 | 3.5598 | - |
|
456 |
+
| 0.8866 | 19000 | 3.5636 | - |
|
457 |
+
| 0.9005 | 19296 | - | 0.7584 |
|
458 |
+
| 0.9100 | 19500 | 3.5536 | - |
|
459 |
+
| 0.9333 | 20000 | 3.5529 | - |
|
460 |
+
| 0.9505 | 20368 | - | 0.7584 |
|
461 |
+
| 0.9566 | 20500 | 3.5485 | - |
|
462 |
+
| 0.9800 | 21000 | 3.5503 | - |
|
463 |
+
| 1.0 | 21429 | - | 0.7584 |
|
464 |
+
|
465 |
+
|
466 |
+
### Framework Versions
|
467 |
+
- Python: 3.10.13
|
468 |
+
- Sentence Transformers: 3.0.1
|
469 |
+
- Transformers: 4.41.2
|
470 |
+
- PyTorch: 2.1.2
|
471 |
+
- Accelerate: 0.31.0
|
472 |
+
- Datasets: 2.19.2
|
473 |
+
- Tokenizers: 0.19.1
|
474 |
+
|
475 |
+
## Citation
|
476 |
+
|
477 |
+
### BibTeX
|
478 |
+
|
479 |
+
#### Sentence Transformers
|
480 |
+
```bibtex
|
481 |
+
@inproceedings{reimers-2019-sentence-bert,
|
482 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
483 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
484 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
485 |
+
month = "11",
|
486 |
+
year = "2019",
|
487 |
+
publisher = "Association for Computational Linguistics",
|
488 |
+
url = "https://arxiv.org/abs/1908.10084",
|
489 |
+
}
|
490 |
+
```
|
491 |
+
|
492 |
+
#### DenoisingAutoEncoderLoss
|
493 |
+
```bibtex
|
494 |
+
@inproceedings{wang-2021-TSDAE,
|
495 |
+
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
|
496 |
+
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
|
497 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
|
498 |
+
month = nov,
|
499 |
+
year = "2021",
|
500 |
+
address = "Punta Cana, Dominican Republic",
|
501 |
+
publisher = "Association for Computational Linguistics",
|
502 |
+
pages = "671--688",
|
503 |
+
url = "https://arxiv.org/abs/2104.06979",
|
504 |
+
}
|
505 |
+
```
|
506 |
+
|
507 |
+
<!--
|
508 |
+
## Glossary
|
509 |
+
|
510 |
+
*Clearly define terms in order to be accessible across audiences.*
|
511 |
+
-->
|
512 |
+
|
513 |
+
<!--
|
514 |
+
## Model Card Authors
|
515 |
+
|
516 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
517 |
+
-->
|
518 |
+
|
519 |
+
<!--
|
520 |
+
## Model Card Contact
|
521 |
+
|
522 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
523 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/e5-base-unsupervised",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f14c5f8cf1bed6f2929d39ef70bd0b7a433bc3d5a16c456119bb5b4d62771f25
|
3 |
+
size 437996134
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"model_max_length": 512,
|
49 |
+
"pad_token": "[PAD]",
|
50 |
+
"sep_token": "[SEP]",
|
51 |
+
"strip_accents": null,
|
52 |
+
"tokenize_chinese_chars": true,
|
53 |
+
"tokenizer_class": "BertTokenizer",
|
54 |
+
"unk_token": "[UNK]"
|
55 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|