bobox commited on
Commit
15f6f24
1 Parent(s): 04fdb7f

AdaptiveLayerLoss(model=model,

Browse files

loss=train_loss,
n_layers_per_step = 1,
last_layer_weight = 1,
prior_layers_weight= 1,
kl_div_weight = 1,
kl_temperature= 1,
)''')
lr = 1e-6. batch = 42, schedule = cosine

1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:314315
11
+ - loss:AdaptiveLayerLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: microsoft/deberta-v3-small
14
+ datasets:
15
+ - stanfordnlp/snli
16
+ metrics:
17
+ - cosine_accuracy
18
+ - cosine_accuracy_threshold
19
+ - cosine_f1
20
+ - cosine_f1_threshold
21
+ - cosine_precision
22
+ - cosine_recall
23
+ - cosine_ap
24
+ - dot_accuracy
25
+ - dot_accuracy_threshold
26
+ - dot_f1
27
+ - dot_f1_threshold
28
+ - dot_precision
29
+ - dot_recall
30
+ - dot_ap
31
+ - manhattan_accuracy
32
+ - manhattan_accuracy_threshold
33
+ - manhattan_f1
34
+ - manhattan_f1_threshold
35
+ - manhattan_precision
36
+ - manhattan_recall
37
+ - manhattan_ap
38
+ - euclidean_accuracy
39
+ - euclidean_accuracy_threshold
40
+ - euclidean_f1
41
+ - euclidean_f1_threshold
42
+ - euclidean_precision
43
+ - euclidean_recall
44
+ - euclidean_ap
45
+ - max_accuracy
46
+ - max_accuracy_threshold
47
+ - max_f1
48
+ - max_f1_threshold
49
+ - max_precision
50
+ - max_recall
51
+ - max_ap
52
+ widget:
53
+ - source_sentence: A man plays the violin.
54
+ sentences:
55
+ - A man is playing violin.
56
+ - The back of a pig under a tree with a cow in the background.
57
+ - The plane is getting ready to take off.
58
+ - source_sentence: A person drops a camera down an escelator.
59
+ sentences:
60
+ - Something is bothering your cat and he does not like it.
61
+ - A man tosses a bag down an escalator.
62
+ - Two smiling women holding a baby.
63
+ - source_sentence: One football player tries to tackle a player on the opposing team.
64
+ sentences:
65
+ - I think Stephen King's comments are helpful in this regard.
66
+ - Our interactions are merely depends on where we put our perception.
67
+ - A football player attempts a tackle.
68
+ - source_sentence: The two men are wearing jeans.
69
+ sentences:
70
+ - Four people eating dessert around a table.
71
+ - Here are some things that worked with my son who started toilet training around
72
+ 2.5 years.
73
+ - The two men are wearing pants.
74
+ - source_sentence: This may be overly obvious, but in American English, saying "you're
75
+ welcome" is certainly polite and standard.
76
+ sentences:
77
+ - I'm not sure how "Not at all" sounds in response to "thank you".
78
+ - As bikeboy389 said, you can learn a lot by looking at students' native languages.
79
+ - A laptop and a PC at a workstation.
80
+ pipeline_tag: sentence-similarity
81
+ model-index:
82
+ - name: SentenceTransformer based on microsoft/deberta-v3-small
83
+ results:
84
+ - task:
85
+ type: binary-classification
86
+ name: Binary Classification
87
+ dataset:
88
+ name: Unknown
89
+ type: unknown
90
+ metrics:
91
+ - type: cosine_accuracy
92
+ value: 0.5397679884752445
93
+ name: Cosine Accuracy
94
+ - type: cosine_accuracy_threshold
95
+ value: 0.9089176654815674
96
+ name: Cosine Accuracy Threshold
97
+ - type: cosine_f1
98
+ value: 0.6834040429248815
99
+ name: Cosine F1
100
+ - type: cosine_f1_threshold
101
+ value: 0.3752323389053345
102
+ name: Cosine F1 Threshold
103
+ - type: cosine_precision
104
+ value: 0.5191082802547771
105
+ name: Cosine Precision
106
+ - type: cosine_recall
107
+ value: 0.9998539506353147
108
+ name: Cosine Recall
109
+ - type: cosine_ap
110
+ value: 0.5794582374804604
111
+ name: Cosine Ap
112
+ - type: dot_accuracy
113
+ value: 0.5302903935097429
114
+ name: Dot Accuracy
115
+ - type: dot_accuracy_threshold
116
+ value: 391.4422302246094
117
+ name: Dot Accuracy Threshold
118
+ - type: dot_f1
119
+ value: 0.6834040429248815
120
+ name: Dot F1
121
+ - type: dot_f1_threshold
122
+ value: 175.07894897460938
123
+ name: Dot F1 Threshold
124
+ - type: dot_precision
125
+ value: 0.5191082802547771
126
+ name: Dot Precision
127
+ - type: dot_recall
128
+ value: 0.9998539506353147
129
+ name: Dot Recall
130
+ - type: dot_ap
131
+ value: 0.5621671154600225
132
+ name: Dot Ap
133
+ - type: manhattan_accuracy
134
+ value: 0.5644855561452726
135
+ name: Manhattan Accuracy
136
+ - type: manhattan_accuracy_threshold
137
+ value: 160.045654296875
138
+ name: Manhattan Accuracy Threshold
139
+ - type: manhattan_f1
140
+ value: 0.6834381551362683
141
+ name: Manhattan F1
142
+ - type: manhattan_f1_threshold
143
+ value: 322.75946044921875
144
+ name: Manhattan F1 Threshold
145
+ - type: manhattan_precision
146
+ value: 0.5191476454083567
147
+ name: Manhattan Precision
148
+ - type: manhattan_recall
149
+ value: 0.9998539506353147
150
+ name: Manhattan Recall
151
+ - type: manhattan_ap
152
+ value: 0.6033119142961784
153
+ name: Manhattan Ap
154
+ - type: euclidean_accuracy
155
+ value: 0.5387064978391084
156
+ name: Euclidean Accuracy
157
+ - type: euclidean_accuracy_threshold
158
+ value: 8.973075866699219
159
+ name: Euclidean Accuracy Threshold
160
+ - type: euclidean_f1
161
+ value: 0.6834065495207667
162
+ name: Euclidean F1
163
+ - type: euclidean_f1_threshold
164
+ value: 24.51708221435547
165
+ name: Euclidean F1 Threshold
166
+ - type: euclidean_precision
167
+ value: 0.5191505498672734
168
+ name: Euclidean Precision
169
+ - type: euclidean_recall
170
+ value: 0.9997079012706295
171
+ name: Euclidean Recall
172
+ - type: euclidean_ap
173
+ value: 0.577277049262529
174
+ name: Euclidean Ap
175
+ - type: max_accuracy
176
+ value: 0.5644855561452726
177
+ name: Max Accuracy
178
+ - type: max_accuracy_threshold
179
+ value: 391.4422302246094
180
+ name: Max Accuracy Threshold
181
+ - type: max_f1
182
+ value: 0.6834381551362683
183
+ name: Max F1
184
+ - type: max_f1_threshold
185
+ value: 322.75946044921875
186
+ name: Max F1 Threshold
187
+ - type: max_precision
188
+ value: 0.5191505498672734
189
+ name: Max Precision
190
+ - type: max_recall
191
+ value: 0.9998539506353147
192
+ name: Max Recall
193
+ - type: max_ap
194
+ value: 0.6033119142961784
195
+ name: Max Ap
196
+ ---
197
+
198
+ # SentenceTransformer based on microsoft/deberta-v3-small
199
+
200
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
201
+
202
+ ## Model Details
203
+
204
+ ### Model Description
205
+ - **Model Type:** Sentence Transformer
206
+ - **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
207
+ - **Maximum Sequence Length:** 512 tokens
208
+ - **Output Dimensionality:** 768 tokens
209
+ - **Similarity Function:** Cosine Similarity
210
+ - **Training Dataset:**
211
+ - [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
212
+ - **Language:** en
213
+ <!-- - **License:** Unknown -->
214
+
215
+ ### Model Sources
216
+
217
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
218
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
219
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
220
+
221
+ ### Full Model Architecture
222
+
223
+ ```
224
+ SentenceTransformer(
225
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
226
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
227
+ )
228
+ ```
229
+
230
+ ## Usage
231
+
232
+ ### Direct Usage (Sentence Transformers)
233
+
234
+ First install the Sentence Transformers library:
235
+
236
+ ```bash
237
+ pip install -U sentence-transformers
238
+ ```
239
+
240
+ Then you can load this model and run inference.
241
+ ```python
242
+ from sentence_transformers import SentenceTransformer
243
+
244
+ # Download from the 🤗 Hub
245
+ model = SentenceTransformer("bobox/DeBERTaV3-small-ST-AdaptiveLayers-ep2")
246
+ # Run inference
247
+ sentences = [
248
+ 'This may be overly obvious, but in American English, saying "you\'re welcome" is certainly polite and standard.',
249
+ 'I\'m not sure how "Not at all" sounds in response to "thank you".',
250
+ "As bikeboy389 said, you can learn a lot by looking at students' native languages.",
251
+ ]
252
+ embeddings = model.encode(sentences)
253
+ print(embeddings.shape)
254
+ # [3, 768]
255
+
256
+ # Get the similarity scores for the embeddings
257
+ similarities = model.similarity(embeddings, embeddings)
258
+ print(similarities.shape)
259
+ # [3, 3]
260
+ ```
261
+
262
+ <!--
263
+ ### Direct Usage (Transformers)
264
+
265
+ <details><summary>Click to see the direct usage in Transformers</summary>
266
+
267
+ </details>
268
+ -->
269
+
270
+ <!--
271
+ ### Downstream Usage (Sentence Transformers)
272
+
273
+ You can finetune this model on your own dataset.
274
+
275
+ <details><summary>Click to expand</summary>
276
+
277
+ </details>
278
+ -->
279
+
280
+ <!--
281
+ ### Out-of-Scope Use
282
+
283
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
284
+ -->
285
+
286
+ ## Evaluation
287
+
288
+ ### Metrics
289
+
290
+ #### Binary Classification
291
+
292
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
293
+
294
+ | Metric | Value |
295
+ |:-----------------------------|:-----------|
296
+ | cosine_accuracy | 0.5398 |
297
+ | cosine_accuracy_threshold | 0.9089 |
298
+ | cosine_f1 | 0.6834 |
299
+ | cosine_f1_threshold | 0.3752 |
300
+ | cosine_precision | 0.5191 |
301
+ | cosine_recall | 0.9999 |
302
+ | cosine_ap | 0.5795 |
303
+ | dot_accuracy | 0.5303 |
304
+ | dot_accuracy_threshold | 391.4422 |
305
+ | dot_f1 | 0.6834 |
306
+ | dot_f1_threshold | 175.0789 |
307
+ | dot_precision | 0.5191 |
308
+ | dot_recall | 0.9999 |
309
+ | dot_ap | 0.5622 |
310
+ | manhattan_accuracy | 0.5645 |
311
+ | manhattan_accuracy_threshold | 160.0457 |
312
+ | manhattan_f1 | 0.6834 |
313
+ | manhattan_f1_threshold | 322.7595 |
314
+ | manhattan_precision | 0.5191 |
315
+ | manhattan_recall | 0.9999 |
316
+ | manhattan_ap | 0.6033 |
317
+ | euclidean_accuracy | 0.5387 |
318
+ | euclidean_accuracy_threshold | 8.9731 |
319
+ | euclidean_f1 | 0.6834 |
320
+ | euclidean_f1_threshold | 24.5171 |
321
+ | euclidean_precision | 0.5192 |
322
+ | euclidean_recall | 0.9997 |
323
+ | euclidean_ap | 0.5773 |
324
+ | max_accuracy | 0.5645 |
325
+ | max_accuracy_threshold | 391.4422 |
326
+ | max_f1 | 0.6834 |
327
+ | max_f1_threshold | 322.7595 |
328
+ | max_precision | 0.5192 |
329
+ | max_recall | 0.9999 |
330
+ | **max_ap** | **0.6033** |
331
+
332
+ <!--
333
+ ## Bias, Risks and Limitations
334
+
335
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
336
+ -->
337
+
338
+ <!--
339
+ ### Recommendations
340
+
341
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
342
+ -->
343
+
344
+ ## Training Details
345
+
346
+ ### Training Dataset
347
+
348
+ #### stanfordnlp/snli
349
+
350
+ * Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
351
+ * Size: 314,315 training samples
352
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
353
+ * Approximate statistics based on the first 1000 samples:
354
+ | | sentence1 | sentence2 | label |
355
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------|
356
+ | type | string | string | int |
357
+ | details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
358
+ * Samples:
359
+ | sentence1 | sentence2 | label |
360
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:---------------|
361
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
362
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>0</code> |
363
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>0</code> |
364
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
365
+ ```json
366
+ {
367
+ "loss": "MultipleNegativesRankingLoss",
368
+ "n_layers_per_step": 1,
369
+ "last_layer_weight": 1,
370
+ "prior_layers_weight": 1,
371
+ "kl_div_weight": 1,
372
+ "kl_temperature": 1
373
+ }
374
+ ```
375
+
376
+ ### Evaluation Dataset
377
+
378
+ #### stanfordnlp/snli
379
+
380
+ * Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
381
+ * Size: 1,500 evaluation samples
382
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
383
+ * Approximate statistics based on the first 1000 samples:
384
+ | | sentence1 | sentence2 | score |
385
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
386
+ | type | string | string | float |
387
+ | details | <ul><li>min: 5 tokens</li><li>mean: 14.77 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.74 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
388
+ * Samples:
389
+ | sentence1 | sentence2 | score |
390
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
391
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
392
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
393
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
394
+ * Loss: [<code>AdaptiveLayerLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#adaptivelayerloss) with these parameters:
395
+ ```json
396
+ {
397
+ "loss": "MultipleNegativesRankingLoss",
398
+ "n_layers_per_step": 1,
399
+ "last_layer_weight": 1,
400
+ "prior_layers_weight": 1,
401
+ "kl_div_weight": 1,
402
+ "kl_temperature": 1
403
+ }
404
+ ```
405
+
406
+ ### Training Logs
407
+ | Epoch | Step | loss | max_ap |
408
+ |:-----:|:----:|:------:|:------:|
409
+ | None | 0 | 4.6204 | 0.6033 |
410
+
411
+
412
+ ### Framework Versions
413
+ - Python: 3.10.13
414
+ - Sentence Transformers: 3.0.1
415
+ - Transformers: 4.41.2
416
+ - PyTorch: 2.1.2
417
+ - Accelerate: 0.30.1
418
+ - Datasets: 2.19.2
419
+ - Tokenizers: 0.19.1
420
+
421
+ ## Citation
422
+
423
+ ### BibTeX
424
+
425
+ #### Sentence Transformers
426
+ ```bibtex
427
+ @inproceedings{reimers-2019-sentence-bert,
428
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
429
+ author = "Reimers, Nils and Gurevych, Iryna",
430
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
431
+ month = "11",
432
+ year = "2019",
433
+ publisher = "Association for Computational Linguistics",
434
+ url = "https://arxiv.org/abs/1908.10084",
435
+ }
436
+ ```
437
+
438
+ #### AdaptiveLayerLoss
439
+ ```bibtex
440
+ @misc{li20242d,
441
+ title={2D Matryoshka Sentence Embeddings},
442
+ author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
443
+ year={2024},
444
+ eprint={2402.14776},
445
+ archivePrefix={arXiv},
446
+ primaryClass={cs.CL}
447
+ }
448
+ ```
449
+
450
+ #### MultipleNegativesRankingLoss
451
+ ```bibtex
452
+ @misc{henderson2017efficient,
453
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
454
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
455
+ year={2017},
456
+ eprint={1705.00652},
457
+ archivePrefix={arXiv},
458
+ primaryClass={cs.CL}
459
+ }
460
+ ```
461
+
462
+ <!--
463
+ ## Glossary
464
+
465
+ *Clearly define terms in order to be accessible across audiences.*
466
+ -->
467
+
468
+ <!--
469
+ ## Model Card Authors
470
+
471
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
472
+ -->
473
+
474
+ <!--
475
+ ## Model Card Contact
476
+
477
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
478
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/deberta-v3-small",
3
+ "architectures": [
4
+ "DebertaV2Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-07,
13
+ "max_position_embeddings": 512,
14
+ "max_relative_positions": -1,
15
+ "model_type": "deberta-v2",
16
+ "norm_rel_ebd": "layer_norm",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "pooler_dropout": 0,
21
+ "pooler_hidden_act": "gelu",
22
+ "pooler_hidden_size": 768,
23
+ "pos_att_type": [
24
+ "p2c",
25
+ "c2p"
26
+ ],
27
+ "position_biased_input": false,
28
+ "position_buckets": 256,
29
+ "relative_attention": true,
30
+ "share_att_key": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.41.2",
33
+ "type_vocab_size": 0,
34
+ "vocab_size": 128100
35
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e75f9f0d0ccf1ea68d57e5e49eadbe854516a7a239c28fe45742d13c727c0aae
3
+ size 565251810
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }