File size: 115,138 Bytes
2a8f28a
 
 
 
 
 
 
 
 
1820867
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
1820867
 
 
 
 
 
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
1820867
2a8f28a
1820867
 
 
 
 
2a8f28a
1820867
 
 
 
2a8f28a
1820867
 
 
 
 
2a8f28a
1820867
 
 
 
2a8f28a
1820867
 
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
1820867
2a8f28a
 
1820867
2a8f28a
 
1820867
2a8f28a
 
1820867
2a8f28a
 
1820867
2a8f28a
 
1820867
2a8f28a
 
1820867
2a8f28a
 
1820867
2a8f28a
 
1820867
2a8f28a
 
1820867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a8f28a
 
 
 
 
1820867
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820867
 
 
 
 
 
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820867
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820867
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820867
2a8f28a
 
1820867
 
 
 
2a8f28a
1820867
 
 
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
1820867
2a8f28a
 
 
 
 
1820867
2a8f28a
1820867
 
 
 
 
2a8f28a
 
 
 
 
1820867
2a8f28a
 
 
 
 
1820867
2a8f28a
1820867
 
 
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
1820867
2a8f28a
 
1820867
 
 
 
2a8f28a
1820867
 
 
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
1820867
2a8f28a
 
1820867
 
 
 
2a8f28a
1820867
 
 
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
1820867
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a8f28a
 
 
 
 
 
1820867
2a8f28a
1820867
2a8f28a
 
 
 
1820867
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
1820867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820867
 
2a8f28a
 
 
 
 
 
 
 
1820867
2a8f28a
 
 
 
 
 
 
 
 
 
1820867
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820867
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a8f28a
 
 
1820867
2a8f28a
 
1820867
 
 
2a8f28a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:131566
- loss:MultipleNegativesRankingLoss
- loss:CoSENTLoss
- loss:GISTEmbedLoss
- loss:OnlineContrastiveLoss
- loss:MultipleNegativesSymmetricRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
- sentence-transformers/all-nli
- sentence-transformers/stsb
- tals/vitaminc
- nyu-mll/glue
- allenai/scitail
- sentence-transformers/xsum
- sentence-transformers/sentence-compression
- allenai/sciq
- allenai/qasc
- allenai/openbookqa
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
- sentence-transformers/natural-questions
- sentence-transformers/trivia-qa
- sentence-transformers/quora-duplicates
- sentence-transformers/gooaq
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Centrosome-independent mitotic spindle formation in  vertebrates.
  sentences:
  - Birds pair up with the same bird in mating season.
  - We use voltage to keep track of electric potential energy.
  - A mitotic spindle forms from the centrosomes.
- source_sentence: A dog carrying a stick in its mouth runs through a snow-covered
    field.
  sentences:
  - The children played on the floor.
  - A pair of people play video games together on a couch.
  - A animal carried a stick through a snow covered field.
- source_sentence: A guy on a skateboard, jumping off some steps.
  sentences:
  - A woman is making music.
  - a guy with a skateboard making a jump
  - A dog holds an object in the water.
- source_sentence: A photographer with bushy dark hair takes a photo of a skateboarder
    at an indoor park.
  sentences:
  - The person with the camera photographs the person skating.
  - A man starring at a piece of paper.
  - The man is riding a bike in sand.
- source_sentence: Why did oil start getting priced in terms of gold?
  sentences:
  - Because oil was priced in dollars, oil producers' real income decreased.
  - This allows all set top boxes in a household to share recordings and other media.
  - Only the series from 2009 onwards are available on Blu-ray, except for the 1970
    story Spearhead from Space, released in July 2013.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on microsoft/deberta-v3-small
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.7740200646402275
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7726824843726025
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7871287254831608
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7758049644234141
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7842462717672578
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7723622369393174
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.705919446324648
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6867859662226861
      name: Spearman Dot
    - type: pearson_max
      value: 0.7871287254831608
      name: Pearson Max
    - type: spearman_max
      value: 0.7758049644234141
      name: Spearman Max
    - type: pearson_cosine
      value: 0.7740200646402275
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7726824843726025
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7871287254831608
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7758049644234141
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7842462717672578
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7723622369393174
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.705919446324648
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6867859662226861
      name: Spearman Dot
    - type: pearson_max
      value: 0.7871287254831608
      name: Pearson Max
    - type: spearman_max
      value: 0.7758049644234141
      name: Spearman Max
---

# SentenceTransformer based on microsoft/deberta-v3-small

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum), [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), [openbookqa_pairs](https://huggingface.co/datasets/allenai/openbookqa), [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
    - [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli)
    - [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb)
    - [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
    - [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue)
    - [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
    - [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
    - [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum)
    - [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression)
    - [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
    - [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
    - [openbookqa_pairs](https://huggingface.co/datasets/allenai/openbookqa)
    - [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
    - [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
    - [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
    - [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
    - [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-GeneralSentenceTransformer")
# Run inference
sentences = [
    'Why did oil start getting priced in terms of gold?',
    "Because oil was priced in dollars, oil producers' real income decreased.",
    'This allows all set top boxes in a household to share recordings and other media.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.774      |
| **spearman_cosine** | **0.7727** |
| pearson_manhattan   | 0.7871     |
| spearman_manhattan  | 0.7758     |
| pearson_euclidean   | 0.7842     |
| spearman_euclidean  | 0.7724     |
| pearson_dot         | 0.7059     |
| spearman_dot        | 0.6868     |
| pearson_max         | 0.7871     |
| spearman_max        | 0.7758     |

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.774      |
| **spearman_cosine** | **0.7727** |
| pearson_manhattan   | 0.7871     |
| spearman_manhattan  | 0.7758     |
| pearson_euclidean   | 0.7842     |
| spearman_euclidean  | 0.7724     |
| pearson_dot         | 0.7059     |
| spearman_dot        | 0.6868     |
| pearson_max         | 0.7871     |
| spearman_max        | 0.7758     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### nli-pairs

* Dataset: [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 10,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                        |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           |
  | details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> |
* Samples:
  | sentence1                                                                  | sentence2                                        |
  |:---------------------------------------------------------------------------|:-------------------------------------------------|
  | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>A person is outdoors, on a horse.</code>   |
  | <code>Children smiling and waving at camera</code>                         | <code>There are children present</code>          |
  | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### sts-label

* Dataset: [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                        | score                                                          |
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                           | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 9.81 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.74 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                             | score             |
  |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
  | <code>A plane is taking off.</code>                        | <code>An air plane is taking off.</code>                              | <code>1.0</code>  |
  | <code>A man is playing a large flute.</code>               | <code>A man is playing a flute.</code>                                | <code>0.76</code> |
  | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "pairwise_cos_sim"
  }
  ```

#### vitaminc-pairs

* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 4,943 training samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | label                        | sentence1                                                                         | sentence2                                                                          |
  |:--------|:-----------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | int                          | string                                                                            | string                                                                             |
  | details | <ul><li>1: 100.00%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.56 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 37.97 tokens</li><li>max: 184 tokens</li></ul> |
* Samples:
  | label          | sentence1                                                                  | sentence2                                                                                                                  |
  |:---------------|:---------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
  | <code>1</code> | <code>The film scored above 85.5 % based on more than 127 reviews .</code> | <code>On Rotten Tomatoes the film has a rating of 86 % , based on 128 reviews , with an average rating of 7.2/10 .</code>  |
  | <code>1</code> | <code>The film has more than 59 reviews .</code>                           | <code>On Rotten Tomatoes , the film has a rating of 47 % , based on 60 reviews , with an average rating of 5.4/10 .</code> |
  | <code>1</code> | <code>More than 100 cases of COVID-19 have been reported .</code>          | <code>Tamil Nadu reported more than 190 cases in a day , all who had been to the event.</code>                             |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### qnli-contrastive

* Dataset: [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 10,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | label                        |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
  | type    | string                                                                            | string                                                                             | int                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 13.69 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 35.17 tokens</li><li>max: 499 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
* Samples:
  | sentence1                                                                                                            | sentence2                                                                                                                                                                                               | label          |
  |:---------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>What year was the Southampton Docks company created?</code>                                                    | <code>The Southampton Docks company had been formed in 1835.</code>                                                                                                                                     | <code>0</code> |
  | <code>what happens to the reflected wave which allows the antenna to reach its asympotic feedpoint impedance?</code> | <code>Thus the antenna's impedance, given by the ratio of feedpoint voltage to current, is altered due to the antenna's proximity to the ground.</code>                                                 | <code>0</code> |
  | <code>West 132nd Street is interrupted by St. Nicholas Park and which college?</code>                                | <code>The main portion of 132nd Street runs eastbound from Frederick Douglass Boulevard to northern end of Park Avenue where there is a southbound exit from/entrance to the Harlem River Drive.</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)

#### scitail-pairs-qa

* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 6,595 training samples
* Columns: <code>sentence2</code> and <code>sentence1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence2                                                                         | sentence1                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.18 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.15 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | sentence2                                                                                                                 | sentence1                                                                                                                             |
  |:--------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Nearly five million people die yearly due to air pollution.</code>                                                  | <code>Nearly how many millions of people die yearly due to air pollution?</code>                                                      |
  | <code>Exercising every day is an example of a good health habit.</code>                                                   | <code>Which activity is an example of a good health habit?</code>                                                                     |
  | <code>A(n) fungus causes ergot, a disease that impacts crops directly and has more devastating effects on animals.</code> | <code>A type of what organism causes ergot, a disease that impacts crops directly and has more devastating effects on animals?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 3,405 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                        |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           |
  | details | <ul><li>min: 8 tokens</li><li>mean: 23.97 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.1 tokens</li><li>max: 39 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                              | sentence2                                                                                                |
  |:---------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|
  | <code>Tornadoes Tornadoes are most common during the period of spring and early summer, but can occur in any month of the year.</code> | <code>Tornadoes can occur in any.</code>                                                                 |
  | <code>A watershed is the land area that drains water into a river system or other body of water.</code>                                | <code>All of the land drained by a river system is called its basin, or the "wet" term  watershed</code> |
  | <code>Humans have 23 pairs of chromosomes (one set from each parent).</code>                                                           | <code>Humans have 23 pairs pairs of chromosomes.</code>                                                  |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### xsum-pairs

* Dataset: [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum) at [788ddaf](https://huggingface.co/datasets/sentence-transformers/xsum/tree/788ddafe04e539956d56b567bc32a036ee7b9206)
* Size: 10,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                           | sentence2                                                                          |
  |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 355.4 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 27.07 tokens</li><li>max: 70 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sentence2                                                                                                                                              |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Former Royal Marine Stephen Gough, 55, was found guilty by a jury at Winchester Crown Court of breaching an anti-social behaviour order (Asbo).<br>The order bans him from taking off his clothes in public.<br>He had refused to put on clothes as he left Winchester Prison after being imprisoned for a previous Asbo breach.<br>Judge Jane Miller QC suggested moves should be made to find Gough a closed nudist community to live in to prevent the cycle of imprisonment which has seen him jailed for much of the past eight years.<br>Gough earned his nickname when he completed a naked trek from Land's End to John O'Groats in 2003.<br>A BBC documentary team followed his journey.<br>He had previously argued there was nothing intimidating about him appearing "in his natural human state".</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <code>A man known as the "naked rambler" has been jailed for two-and-a-half years after walking out of prison wearing only his boots and socks.</code> |
  | <code>Colbert, 49, is host of Comedy Central's acclaimed late-night satire programme The Colbert Report.<br>Letterman, 66, said last week he was retiring after 21 years hosting the CBS show and 11 years on NBC's Late Night.<br>On his show, Colbert plays a satirical version of himself to mock right-wing pundits. He has suggested he will retire the character for the new show.<br>"Stephen Colbert is one of the most inventive and respected forces on television," CBS president Leslie Moonves wrote in a statement following the announcement.<br>"David Letterman's legacy and accomplishments are an incredible source of pride for all of us here, and today's announcement speaks to our commitment of upholding what he established for CBS in late night."<br>On his popular and influential Emmy-winning Comedy Central programme, Colbert's biting brand of satire has drawn critical acclaim as well as provoking ire, often from the Republicans and conservatives he skewers.<br>Recently he was attacked on social media for a joke some viewed as disparaging toward Asian Americans but which he meant as a satirical jab at the owner of the Washington Redskins American football team.<br>Of his hiring to the Late Show top spot, Colbert said, "simply being a guest on David Letterman's show has been a highlight of my career."<br>"I never dreamed that I would follow in his footsteps, though everyone in late night follows Dave's lead."</code> | <code>Stephen Colbert will succeed Late Show host David Letterman upon his retirement next year, CBS has said.</code>                                  |
  | <code>The pair are both through to the last eight of the Welsh Open at Cardiff, with White beating defending champion John Higgins 4-1.<br>"Michael White is an amazing player. He has absolutely everything," O'Sullivan, 40, told BBC Wales.<br>"Wales is going to have another world champion... maybe a multiple world champion."<br>O'Sullivan added: "John Higgins behind Stephen Hendry is the best player I have seen and he has lost to Michael.<br>"He [White] is fearless, he plays everybody like they are the same. He doesn't care who is sat in that seat against him and that is a gift.<br>"Michael is now a top player. He's definitely knocking on the doo. If he won the world title this year I wouldn't be surprised."<br>Englishman O'Sullivan had little trouble beating China's Yu Delu 4-1 after losing the opening frame.<br>White, 24, described the victory over four-time world champion Higgins as a career highlight.<br>"It is a fantastic win, [it] would have to be up there with the best of my career," White said.<br>"I am feeling very relaxed and laid back and it showed in my performance.<br>"To get that win in my home event makes it more special. It is good for Wales and the tournament.<br>"Who knows, maybe a Welsh player could get to the final."</code>                                                                                                                                                                           | <code>Welshman Michael White can become a world champion, according to five-time winner Ronnie O'Sullivan.</code>                                      |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### compression-pairs

* Dataset: [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
* Size: 10,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                           | sentence2                                                                         |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 10 tokens</li><li>mean: 31.89 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.21 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                                                                          | sentence2                                              |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|
  | <code>The USHL completed an expansion draft on Monday as 10 players who were on the rosters of USHL teams during the 2009-10 season were selected by the League's two newest entries, the Muskegon Lumberjacks and Dubuque Fighting Saints.</code> | <code>USHL completes expansion draft</code>            |
  | <code>Major League Baseball Commissioner Bud Selig will be speaking at St. Norbert College next month.</code>                                                                                                                                      | <code>Bud Selig to speak at St. Norbert College</code> |
  | <code>It's fresh cherry time in Michigan and the best time to enjoy this delicious and nutritious fruit.</code>                                                                                                                                    | <code>It's cherry time</code>                          |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### sciq_pairs

* Dataset: [sciq_pairs](https://huggingface.co/datasets/allenai/sciq) at [2c94ad3](https://huggingface.co/datasets/allenai/sciq/tree/2c94ad3e1aafab77146f384e23536f97a4849815)
* Size: 10,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 17.26 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 84.37 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                                                                                                                   | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What type of organism is commonly used in preparation of foods such as cheese and yogurt?</code>                                                                                      | <code>Mesophiles grow best in moderate temperature, typically between 25°C and 40°C (77°F and 104°F). Mesophiles are often found living in or on the bodies of humans or other animals. The optimal growth temperature of many pathogenic mesophiles is 37°C (98°F), the normal human body temperature. Mesophilic organisms have important uses in food preparation, including cheese, yogurt, beer and wine.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
  | <code>What phenomenon makes global winds blow northeast to southwest or the reverse in the northern hemisphere and northwest to southeast or the reverse in the southern hemisphere?</code> | <code>Without Coriolis Effect the global winds would blow north to south or south to north. But Coriolis makes them blow northeast to southwest or the reverse in the Northern Hemisphere. The winds blow northwest to southeast or the reverse in the southern hemisphere.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  | <code>Changes from a less-ordered state to a more-ordered state (such as a liquid to a solid) are always what?</code>                                                                       | <code>Summary Changes of state are examples of phase changes, or phase transitions. All phase changes are accompanied by changes in the energy of a system. Changes from a more-ordered state to a less-ordered state (such as a liquid to a gas) areendothermic. Changes from a less-ordered state to a more-ordered state (such as a liquid to a solid) are always exothermic. The conversion of a solid to a liquid is called fusion (or melting). The energy required to melt 1 mol of a substance is its enthalpy of fusion (ΔHfus). The energy change required to vaporize 1 mol of a substance is the enthalpy of vaporization (ΔHvap). The direct conversion of a solid to a gas is sublimation. The amount of energy needed to sublime 1 mol of a substance is its enthalpy of sublimation (ΔHsub) and is the sum of the enthalpies of fusion and vaporization. Plots of the temperature of a substance versus heat added or versus heating time at a constant rate of heating are calledheating curves. Heating curves relate temperature changes to phase transitions. A superheated liquid, a liquid at a temperature and pressure at which it should be a gas, is not stable. A cooling curve is not exactly the reverse of the heating curve because many liquids do not freeze at the expected temperature. Instead, they form a supercooled liquid, a metastable liquid phase that exists below the normal melting point. Supercooled liquids usually crystallize on standing, or adding a seed crystal of the same or another substance can induce crystallization.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### qasc_pairs

* Dataset: [qasc_pairs](https://huggingface.co/datasets/allenai/qasc) at [a34ba20](https://huggingface.co/datasets/allenai/qasc/tree/a34ba204eb9a33b919c10cc08f4f1c8dae5ec070)
* Size: 8,134 training samples
* Columns: <code>id</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | id                                                                                 | sentence1                                                                         | sentence2                                                                          |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | string                                                                             |
  | details | <ul><li>min: 17 tokens</li><li>mean: 21.35 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.47 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 35.55 tokens</li><li>max: 66 tokens</li></ul> |
* Samples:
  | id                                          | sentence1                                                      | sentence2                                                                                                                                                                          |
  |:--------------------------------------------|:---------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>3E7TUJ2EGCLQNOV1WEAJ2NN9ROPD9K</code> | <code>What type of water formation is formed by clouds?</code> | <code>beads of water are formed by water vapor condensing. Clouds are made of water vapor.. Beads of water can be formed by clouds.</code>                                         |
  | <code>3LS2AMNW5FPNJK3C3PZLZCPX562OQO</code> | <code>Where do beads of water come from?</code>                | <code>beads of water are formed by water vapor condensing. Condensation is the change of water vapor to a liquid.. Vapor turning into a liquid leaves behind beads of water</code> |
  | <code>3TMFV4NEP8DPIPCI8H9VUFHJG8V8W3</code> | <code>What forms beads of water? </code>                       | <code>beads of water are formed by water vapor condensing. An example of water vapor is steam.. Steam forms beads of water.</code>                                                 |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.05}
  ```

#### openbookqa_pairs

* Dataset: [openbookqa_pairs](https://huggingface.co/datasets/allenai/openbookqa) at [388097e](https://huggingface.co/datasets/allenai/openbookqa/tree/388097ea7776314e93a529163e0fea805b8a6454)
* Size: 2,740 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 13.83 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 11.37 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
  | sentence1                                        | sentence2                                                                 |
  |:-------------------------------------------------|:--------------------------------------------------------------------------|
  | <code>The sun is responsible for</code>          | <code>the sun is the source of energy for physical cycles on Earth</code> |
  | <code>When food is reduced in the stomach</code> | <code>digestion is when stomach acid breaks down food</code>              |
  | <code>Stars are</code>                           | <code>a star is made of gases</code>                                      |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### msmarco_pairs

* Dataset: [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3) at [28ff31e](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3/tree/28ff31e4c97cddd53d298497f766e653f1e666f9)
* Size: 10,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 8.61 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 75.09 tokens</li><li>max: 206 tokens</li></ul> |
* Samples:
  | sentence1                                                                           | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  |:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what are the liberal arts?</code>                                             | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                        |
  | <code>what is the mechanism of action of fibrinolytic or thrombolytic drugs?</code> | <code>Baillière's Clinical Haematology. 6 Mechanism of action of the thrombolytic agents. 6 Mechanism of action of the thrombolytic agents JEFFREY I. WEITZ Fibrin formed during the haemostatic, inflammatory or tissue repair process serves a temporary role, and must be degraded to restore normal tissue function and structure.</code>                                                                                                                                                                                                                                                                                                                                           |
  | <code>what is normal plat count</code>                                              | <code>78 Followers. A. Platelets are the tiny blood cells that help stop bleeding by binding together to form a clump or plug at sites of injury inside blood vessels. A normal platelet count is between 150,000 and 450,000 platelets per microliter (one-millionth of a liter, abbreviated mcL).The average platelet count is 237,000 per mcL in men and 266,000 per mcL in women.8 Followers. A. Platelets are the tiny blood cells that help stop bleeding by binding together to form a clump or plug at sites of injury inside blood vessels. A normal platelet count is between 150,000 and 450,000 platelets per microliter (one-millionth of a liter, abbreviated mcL).</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### nq_pairs

* Dataset: [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 10,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                          | sentence2                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                               |
  | details | <ul><li>min: 10 tokens</li><li>mean: 11.77 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 131.57 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                       | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  |:----------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>when did richmond last play in a preliminary final</code> | <code>Richmond Football Club Richmond began 2017 with 5 straight wins, a feat it had not achieved since 1995. A series of close losses hampered the Tigers throughout the middle of the season, including a 5-point loss to the Western Bulldogs, 2-point loss to Fremantle, and a 3-point loss to the Giants. Richmond ended the season strongly with convincing victories over Fremantle and St Kilda in the final two rounds, elevating the club to 3rd on the ladder. Richmond's first final of the season against the Cats at the MCG attracted a record qualifying final crowd of 95,028; the Tigers won by 51 points. Having advanced to the first preliminary finals for the first time since 2001, Richmond defeated Greater Western Sydney by 36 points in front of a crowd of 94,258 to progress to the Grand Final against Adelaide, their first Grand Final appearance since 1982. The attendance was 100,021, the largest crowd to a grand final since 1986. The Crows led at quarter time and led by as many as 13, but the Tigers took over the game as it progressed and scored seven straight goals at one point. They eventually would win by 48 points – 16.12 (108) to Adelaide's 8.12 (60) – to end their 37-year flag drought.[22] Dustin Martin also became the first player to win a Premiership medal, the Brownlow Medal and the Norm Smith Medal in the same season, while Damien Hardwick was named AFL Coaches Association Coach of the Year. Richmond's jump from 13th to premiers also marked the biggest jump from one AFL season to the next.</code> |
  | <code>who sang what in the world's come over you</code>         | <code>Jack Scott (singer) At the beginning of 1960, Scott again changed record labels, this time to Top Rank Records.[1] He then recorded four Billboard Hot 100 hits – "What in the World's Come Over You" (#5), "Burning Bridges" (#3) b/w "Oh Little One" (#34), and "It Only Happened Yesterday" (#38).[1] "What in the World's Come Over You" was Scott's second gold disc winner.[6] Scott continued to record and perform during the 1960s and 1970s.[1] His song "You're Just Gettin' Better" reached the country charts in 1974.[1] In May 1977, Scott recorded a Peel session for BBC Radio 1 disc jockey, John Peel.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  | <code>who produces the most wool in the world</code>            | <code>Wool Global wool production is about 2 million tonnes per year, of which 60% goes into apparel. Wool comprises ca 3% of the global textile market, but its value is higher owing to dying and other modifications of the material.[1] Australia is a leading producer of wool which is mostly from Merino sheep but has been eclipsed by China in terms of total weight.[30] New Zealand (2016) is the third-largest producer of wool, and the largest producer of crossbred wool. Breeds such as Lincoln, Romney, Drysdale, and Elliotdale produce coarser fibers, and wool from these sheep is usually used for making carpets.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### trivia_pairs

* Dataset: [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa) at [a7c36e3](https://huggingface.co/datasets/sentence-transformers/trivia-qa/tree/a7c36e3c8c8c01526bc094d79bf80d4c848b0ad0)
* Size: 10,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 15.16 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 19 tokens</li><li>mean: 456.87 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence1                                                                                 | sentence2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Which American-born Sinclair won the Nobel Prize for Literature in 1930?</code>     | <code>The Nobel Prize in Literature 1930 The Nobel Prize in Literature 1930 Sinclair Lewis The Nobel Prize in Literature 1930 Sinclair Lewis Prize share: 1/1 The Nobel Prize in Literature 1930 was awarded to Sinclair Lewis "for his vigorous and graphic art of description and his ability to create, with wit and humour, new types of characters". Photos: Copyright © The Nobel Foundation Share this: To cite this page MLA style: "The Nobel Prize in Literature 1930". Nobelprize.org. Nobel Media AB 2014. Web. 18 Jan 2017. <http://www.nobelprize.org/nobel_prizes/literature/laureates/1930/></code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
  | <code>Where in England was Dame Judi Dench born?</code>                                   | <code>Judi Dench - IMDb IMDb Actress | Music Department | Soundtrack Judi Dench was born in York, England, to Eleanora Olive (Jones), who was from Dublin, Ireland, and Reginald Arthur Dench, a doctor from Dorset, England. She attended Mount School in York, and studied at the Central School of Speech and Drama. She has performed with Royal Shakespeare Company, the National Theatre, and at Old Vic Theatre. She is a ... See full bio » Born: a list of 35 people created 02 Jul 2011 a list of 35 people created 19 Apr 2012 a list of 35 people created 28 May 2014 a list of 25 people created 05 Aug 2014 a list of 26 people created 18 May 2015 Do you have a demo reel? Add it to your IMDbPage How much of Judi Dench's work have you seen? User Polls Won     1     Oscar. Another    59 wins & 163 nominations. See more awards  » Known For  2016 The Hollow Crown (TV Series) Cecily, Duchess of York  2015 The Vote (TV Movie) Christine Metcalfe - Total War (1996) ... Narrator (voice) - Stalemate (1996) ... Narrator (voice)  1992 The Torch (TV Mini-Series) Aba  1990 Screen One (TV Series) Anne  1989 Behaving Badly (TV Mini-Series) Bridget  1981 BBC2 Playhouse (TV Series) Sister Scarli  1976 Arena (TV Series documentary) Sweetie Simpkins  1973 Ooh La La! (TV Series) Amélie  1966 Court Martial (TV Series) Marthe  1963 Z Cars (TV Series) Elena Collins  1963 Love Story (TV Series) Pat McKendrick  1960 The Terrible Choice (TV Series) Good Angel Music department (1 credit)   A Fine Romance (TV Series) (theme sung by - 14 episodes, 1981 - 1983) (theme song sung by - 12 episodes, 1983 - 1984) - A Romantic Meal (1984) ... (theme song sung by) - Problems (1984) ... (theme song sung by)  2013 Fifty Years on Stage (TV Movie) (performer: "Send in the Clowns")  2009 Nine (performer: "Folies Bergère") - What's Wrong with Mrs Bale? (1997) ... (performer: "Raindrops Keep Fallin' On My Head" - uncredited) - Misunderstandings (1993) ... (performer: "Walkin' My Baby Back Home" - uncredited)  1982-1984 A Fine Romance (TV Series) (performer - 2 episodes) - The Telephone Call (1984) ... (performer: "Boogie Woogie Bugle Boy" - uncredited) - Furniture (1982) ... (performer: "Rule, Britannia!" - uncredited) Hide   2009 Waiting in Rhyme (Video short) (special thanks)  2007 Expresso (Short) (special thanks)  1999 Shakespeare in Love and on Film (TV Movie documentary) (thanks - as Dame Judi Dench) Hide   2016 Rio Olympics (TV Mini-Series) Herself  2015 In Conversation (TV Series documentary) Herself  2015 Entertainment Tonight (TV Series) Herself  2015 CBS This Morning (TV Series) Herself - Guest  2015 The Insider (TV Series) Herself  1999-2014 Cinema 3 (TV Series) Herself  2013 Good Day L.A. (TV Series) Herself - Guest  2013 Arena (TV Series documentary) Herself  2013 At the Movies (TV Series) Herself  2013 Shooting Bond (Video documentary) Herself  2013 Bond's Greatest Moments (TV Movie documentary) Herself  2012 Made in Hollywood (TV Series) Herself  1999-2012 Charlie Rose (TV Series) Herself - Guest  2008-2012 This Morning (TV Series) Herself - Guest  2012 The Secrets of Skyfall (TV Short documentary) Herself  2012 Anderson Live (TV Series) Herself  2012 J. Edgar: A Complicated Man (Video documentary short) Herself  2011 The Many Faces of... (TV Series documentary) Herself / Various Characters  2011 Na plovárne (TV Series) Herself  2010 BBC Proms (TV Series) Herself  2010 The South Bank Show Revisited (TV Series documentary) Herself - Episode #6.68 (2009) ... Herself - Guest (as Dame Judi Dench)  2007-2009 Breakfast (TV Series)  2009 Larry King Live (TV Series) Herself - Guest  2009 The One Show (TV Series) Herself  2009 Cranford in Detail (Video documentary short) Herself / Miss Matty Jenkins (as Dame Judi Dench)  2005-2008 The South Bank Show (TV Series documentary) Herself  2008 Tavis Smiley (TV Series) Herself - Guest  2007 ITV News (TV Series) Herself - BAFTA Nominee  2007 The Making of Cranford (Video documentary short) Herself / Miss Matty Jenkyns (as Dame Judi Dench)  2006 Becoming Bond (TV Movie documentary) Herself  2006 Corazón de... (TV Series) Hers</code> |
  | <code>In which decade did Billboard magazine first publish and American hit chart?</code> | <code>The US Billboard song chart The US Billboard song chart Search this site with Google Song chart US Billboard The Billboard magazine has published various music charts starting (with sheet music) in 1894, the first "Music Hit Parade" was published in 1936 , the first "Music Popularity Chart" was calculated in 1940 . These charts became less irregular until the weekly "Hot 100" was started in 1958 . The current chart combines sales, airplay and downloads. A music collector that calls himself Bullfrog has been consolidating the complete chart from 1894 to the present day.  he has published this information in a comprehenive spreadsheet (which can be obtained at bullfrogspond.com/ ). The Bullfrog data assigns each song a unique identifier, something like "1968_076" (which just happens to be the Bee Gees song "I've Gotta Get A Message To You"). This "Whitburn Number" is provided to match with the books of Joel Whitburn and consists of the year and a ranking within the year. A song that first entered the charts in December and has a long run is listed the following year. This numbering scheme means that songs which are still in the charts cannot be assigned a final id, because their ranking might change. So the definitive listing for a year cannot be final until about April. In our listing we only use songs with finalised IDs, this means that every year we have to wait until last year's entries are finalised before using them. (Source bullfrogspond.com/ , the original version used here was 20090808 with extra data from: the 2009 data from 20091219 the 2010 data from 20110305 the 2011 data from 20120929 the 2012 data from 20130330 the 2013 data from 20150328 The 20150328 data was the last one produced before the Billboard company forced the data to be withdrawn. As far as we know there are no more recent data sets available. This pattern of obtaining the data for a particular year in the middle of the following one comes from the way that the Bullfrog project generates the identifier for a song (what they call the "Prefix" in the spreadsheet). Recent entries are identified with keys like "2015-008" while older ones have keys like "2013_177". In the second case the underscore is significant, it indicates that this was the 177th biggest song released in 2013. Now, of course, during the year no one knows where a particular song will rank, so the underscore names can't be assigned until every song from a particular year has dropped out of the charts, so recent records are temporarily assigned a name with a dash. In about May of the following year the rankings are calculated and the final identifiers are assigned. That is why we at the Turret can only grab this data retrospectively. Attributes The original spreadsheet has a number of attributes, we have limited our attention to just a few of them: 134 9 The songs with the most entries on the chart were White Christmas (with 33 versions and a total of 110 weeks) and Stardust (with 19 and a total of 106 weeks). position The peak position that songs reached in the charts should show an smooth curve from number one down to the lowest position. This chart has more songs in the lower peak positions than one would expect. Before 1991 the profile of peak positions was exactly as you would expect, that year Billboard introduced the concept of "Recurrent" tracks, that is they removed any track from the chart which had spent more than twenty weeks in the chart and had fallen to the lower positions. weeks The effect of the "Recurrent" process, by which tracks are removed if they have spent at least twenty weeks in the chart and have fallen to the lower reaches, can clearly be seen in the strange spike in this attribute. This "adjustment" was intended to promote newer songs and ensure the chart does not become "stale". In fact since it was introduced in 1991 the length of long chart runs has increased, this might reflect the more conscious efforts of record companies to "game" the charts by controlling release times and promotions, or it coul</code>                                            |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### quora_pairs

* Dataset: [quora_pairs](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 10,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            |
  | details | <ul><li>min: 6 tokens</li><li>mean: 13.53 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.68 tokens</li><li>max: 43 tokens</li></ul> |
* Samples:
  | sentence1                                                                                           | sentence2                                                                                               |
  |:----------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
  | <code>Astrology: I am a Capricorn Sun Cap moon and cap rising...what does that say about me?</code> | <code>I'm a triple Capricorn (Sun, Moon and ascendant in Capricorn) What does this say about me?</code> |
  | <code>How can I be a good geologist?</code>                                                         | <code>What should I do to be a great geologist?</code>                                                  |
  | <code>How do I read and find my YouTube comments?</code>                                            | <code>How can I see all my Youtube comments?</code>                                                     |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### gooaq_pairs

* Dataset: [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 10,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                           |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.6 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 57.74 tokens</li><li>max: 127 tokens</li></ul> |
* Samples:
  | sentence1                                          | sentence2                                                                                                                                                                                                                                                                                                                                       |
  |:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>is toprol xl the same as metoprolol?</code>  | <code>Metoprolol succinate is also known by the brand name Toprol XL. It is the extended-release form of metoprolol. Metoprolol succinate is approved to treat high blood pressure, chronic chest pain, and congestive heart failure.</code>                                                                                                    |
  | <code>are you experienced cd steve hoffman?</code> | <code>The Are You Experienced album was apparently mastered from the original stereo UK master tapes (according to Steve Hoffman - one of the very few who has heard both the master tapes and the CDs produced over the years). ... The CD booklets were a little sparse, but at least they stayed true to the album's original design.</code> |
  | <code>how are babushka dolls made?</code>          | <code>Matryoshka dolls are made of wood from lime, balsa, alder, aspen, and birch trees; lime is probably the most common wood type. ... After cutting, the trees are stripped of most of their bark, although a few inner rings of bark are left to bind the wood and keep it from splitting.</code>                                           |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Datasets

#### nli-pairs

* Dataset: [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,808 evaluation samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           |
  | details | <ul><li>min: 5 tokens</li><li>mean: 17.64 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.67 tokens</li><li>max: 29 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                         | positive                                                    |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|
  | <code>Two women are embracing while holding to go packages.</code>                                                                                                             | <code>Two woman are holding packages.</code>                |
  | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> |
  | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code>                                                                    | <code>A man selling donuts to a customer.</code>            |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### scitail-pairs-pos

* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 1,304 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | label                                           |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                             |
  | details | <ul><li>min: 5 tokens</li><li>mean: 22.52 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.34 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>0: ~47.50%</li><li>1: ~52.50%</li></ul> |
* Samples:
  | sentence1                                                                                                                         | sentence2                                                                                          | label          |
  |:----------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
  | <code>An introduction to atoms and elements, compounds, atomic structure and bonding, the molecule and chemical reactions.</code> | <code>Replace another in a molecule happens to atoms during a substitution reaction.</code>        | <code>0</code> |
  | <code>Wavelength The distance between two consecutive points on a sinusoidal wave that are in phase;</code>                       | <code>Wavelength is the distance between two corresponding points of adjacent waves called.</code> | <code>1</code> |
  | <code>humans normally have 23 pairs of chromosomes.</code>                                                                        | <code>Humans typically have 23 pairs pairs of chromosomes.</code>                                  | <code>1</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

#### qnli-contrastive

* Dataset: [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 5,463 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                          | label                        |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
  | type    | string                                                                            | string                                                                             | int                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 14.13 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 36.58 tokens</li><li>max: 225 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
* Samples:
  | sentence1                                                                 | sentence2                                                                                                                                        | label          |
  |:--------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>What came into force after the new constitution was herald?</code>  | <code>As of that day, the new constitution heralding the Second Republic came into force.</code>                                                 | <code>0</code> |
  | <code>What is the first major city in the stream of the Rhine?</code>     | <code>The most important tributaries in this area are the Ill below of Strasbourg, the Neckar in Mannheim and the Main across from Mainz.</code> | <code>0</code> |
  | <code>What is the minimum required if you want to teach in Canada?</code> | <code>In most provinces a second Bachelor's Degree such as a Bachelor of Education is required to become a qualified teacher.</code>             | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 28
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `weight_decay`: 1e-10
- `num_train_epochs`: 2
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `push_to_hub`: True
- `hub_model_id`: bobox/DeBERTaV3-small-GeneralSentenceTransformer-v2-checkpoints-tmp
- `hub_strategy`: checkpoint
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 28
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 1e-10
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 2
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTaV3-small-GeneralSentenceTransformer-v2-checkpoints-tmp
- `hub_strategy`: checkpoint
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch | Step | Training Loss | nli-pairs loss | qnli-contrastive loss | scitail-pairs-pos loss | sts-test_spearman_cosine |
|:-----:|:----:|:-------------:|:--------------:|:---------------------:|:----------------------:|:------------------------:|
| None  | 0    | -             | 2.9404         | 4.1500                | 2.3949                 | -                        |
| 0.1   | 471  | 3.3296        | 1.8879         | 2.2598                | 1.3439                 | -                        |
| 0.2   | 942  | 1.8704        | 0.9546         | 1.8402                | 0.5629                 | -                        |
| 0.3   | 1413 | 1.2621        | 0.7152         | 1.3887                | 0.4553                 | -                        |
| 0.4   | 1884 | 1.2512        | 0.5274         | 0.8418                | 0.3621                 | -                        |
| 0.5   | 2355 | 1.1724        | 0.4927         | 0.1424                | 0.3924                 | -                        |
| 0.6   | 2826 | 0.9036        | 0.4621         | 0.3409                | 0.3777                 | -                        |
| 0.7   | 3297 | 1.0374        | 0.4111         | 0.2125                | 0.3417                 | -                        |
| 0.8   | 3768 | 0.9259        | 0.3853         | 0.1646                | 0.2819                 | -                        |
| 0.9   | 4239 | 0.8709        | 0.3749         | 0.1157                | 0.2912                 | -                        |
| 1.0   | 4710 | 0.8686        | 0.3636         | 0.0961                | 0.3109                 | -                        |
| 1.1   | 5181 | 0.726         | 0.3744         | 0.0453                | 0.3424                 | -                        |
| 1.2   | 5652 | 0.8151        | 0.3502         | 0.1835                | 0.2602                 | -                        |
| 1.3   | 6123 | 0.7127        | 0.3362         | 0.1089                | 0.2460                 | -                        |
| 1.4   | 6594 | 0.8408        | 0.3184         | 0.0701                | 0.2784                 | -                        |
| 1.5   | 7065 | 0.7845        | 0.3191         | 0.0318                | 0.2822                 | -                        |
| 1.6   | 7536 | 0.5766        | 0.3056         | 0.0566                | 0.2774                 | -                        |
| 1.7   | 8007 | 0.7304        | 0.2991         | 0.0542                | 0.2736                 | -                        |
| 1.8   | 8478 | 0.6639        | 0.2949         | 0.0515                | 0.2694                 | -                        |
| 1.9   | 8949 | 0.6153        | 0.2938         | 0.0589                | 0.2718                 | -                        |
| 2.0   | 9420 | 0.6665        | 0.2937         | 0.0569                | 0.2724                 | 0.7727                   |


### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning}, 
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->