bluestarburst
commited on
Commit
•
5a57f66
1
Parent(s):
a74fae4
Upload folder using huggingface_hub
Browse files
animatediff/models/__pycache__/unet.cpython-310.pyc
CHANGED
Binary files a/animatediff/models/__pycache__/unet.cpython-310.pyc and b/animatediff/models/__pycache__/unet.cpython-310.pyc differ
|
|
animatediff/models/unet.py
CHANGED
@@ -456,12 +456,15 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
|
456 |
return UNet3DConditionOutput(sample=sample)
|
457 |
|
458 |
@classmethod
|
459 |
-
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None):
|
460 |
if subfolder is not None:
|
461 |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
462 |
print(f"loaded temporal unet's pretrained weights from {pretrained_model_path} ...")
|
463 |
-
|
464 |
config_file = os.path.join(pretrained_model_path, 'config.json')
|
|
|
|
|
|
|
|
|
465 |
if not os.path.isfile(config_file):
|
466 |
raise RuntimeError(f"{config_file} does not exist")
|
467 |
with open(config_file, "r") as f:
|
@@ -482,7 +485,11 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
|
482 |
|
483 |
from diffusers.utils import WEIGHTS_NAME
|
484 |
model = cls.from_config(config, **unet_additional_kwargs)
|
485 |
-
|
|
|
|
|
|
|
|
|
486 |
if not os.path.isfile(model_file):
|
487 |
raise RuntimeError(f"{model_file} does not exist")
|
488 |
state_dict = torch.load(model_file, map_location="cpu")
|
|
|
456 |
return UNet3DConditionOutput(sample=sample)
|
457 |
|
458 |
@classmethod
|
459 |
+
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None, config_path=None):
|
460 |
if subfolder is not None:
|
461 |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
462 |
print(f"loaded temporal unet's pretrained weights from {pretrained_model_path} ...")
|
|
|
463 |
config_file = os.path.join(pretrained_model_path, 'config.json')
|
464 |
+
|
465 |
+
if config_path is not None:
|
466 |
+
config_file = config_path
|
467 |
+
|
468 |
if not os.path.isfile(config_file):
|
469 |
raise RuntimeError(f"{config_file} does not exist")
|
470 |
with open(config_file, "r") as f:
|
|
|
485 |
|
486 |
from diffusers.utils import WEIGHTS_NAME
|
487 |
model = cls.from_config(config, **unet_additional_kwargs)
|
488 |
+
|
489 |
+
if config_path is None:
|
490 |
+
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
491 |
+
else:
|
492 |
+
model_file = pretrained_model_path
|
493 |
if not os.path.isfile(model_file):
|
494 |
raise RuntimeError(f"{model_file} does not exist")
|
495 |
state_dict = torch.load(model_file, map_location="cpu")
|
handler.py
CHANGED
@@ -3,7 +3,7 @@
|
|
3 |
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
4 |
from transformers import CLIPTextModel, CLIPTokenizer
|
5 |
from omegaconf import OmegaConf
|
6 |
-
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
import os
|
9 |
|
@@ -21,8 +21,9 @@ from animatediff.utils.util import load_weights
|
|
21 |
class EndpointHandler():
|
22 |
def __init__(self, model_path: str = "bluestarburst/AnimateDiff-SceneFusion"):
|
23 |
|
24 |
-
inference_config_path = "configs/inference/inference-v3.yaml"
|
25 |
-
hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="configs/inference/inference-v3.yaml")
|
|
|
26 |
|
27 |
inference_config = OmegaConf.load(inference_config_path)
|
28 |
|
@@ -33,13 +34,12 @@ class EndpointHandler():
|
|
33 |
text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="models/StableDiffusion/text_encoder")
|
34 |
vae = AutoencoderKL.from_pretrained(model_path, subfolder="models/StableDiffusion/vae")
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="models/StableDiffusion/unet/diffusion_pytorch_model.bin")
|
39 |
|
40 |
-
unet_model_path
|
41 |
|
42 |
-
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path=unet_model_path, unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
|
43 |
|
44 |
if is_xformers_available(): unet.enable_xformers_memory_efficient_attention()
|
45 |
else: assert False
|
|
|
3 |
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
4 |
from transformers import CLIPTextModel, CLIPTokenizer
|
5 |
from omegaconf import OmegaConf
|
6 |
+
from huggingface_hub import hf_hub_download, try_to_load_from_cache
|
7 |
|
8 |
import os
|
9 |
|
|
|
21 |
class EndpointHandler():
|
22 |
def __init__(self, model_path: str = "bluestarburst/AnimateDiff-SceneFusion"):
|
23 |
|
24 |
+
# inference_config_path = "configs/inference/inference-v3.yaml"
|
25 |
+
inference_config_path = hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="configs/inference/inference-v3.yaml")
|
26 |
+
print(inference_config_path)
|
27 |
|
28 |
inference_config = OmegaConf.load(inference_config_path)
|
29 |
|
|
|
34 |
text_encoder = CLIPTextModel.from_pretrained(model_path, subfolder="models/StableDiffusion/text_encoder")
|
35 |
vae = AutoencoderKL.from_pretrained(model_path, subfolder="models/StableDiffusion/vae")
|
36 |
|
37 |
+
unet_model_path = hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="models/StableDiffusion/unet/diffusion_pytorch_model.bin")
|
38 |
+
unet_config_path = hf_hub_download(repo_id="bluestarburst/AnimateDiff-SceneFusion", filename="models/StableDiffusion/unet/config.json")
|
|
|
39 |
|
40 |
+
print(unet_model_path)
|
41 |
|
42 |
+
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path=unet_model_path, unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs), config_path=unet_config_path)
|
43 |
|
44 |
if is_xformers_available(): unet.enable_xformers_memory_efficient_attention()
|
45 |
else: assert False
|