bluestarburst's picture
Upload folder using huggingface_hub
09bf9a3
raw
history blame
14.9 kB
import os
import json
import torch
import random
import gradio as gr
from glob import glob
from omegaconf import OmegaConf
from datetime import datetime
from safetensors import safe_open
from diffusers import AutoencoderKL
from diffusers import DDIMScheduler, EulerDiscreteScheduler, PNDMScheduler
from diffusers.utils.import_utils import is_xformers_available
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import save_videos_grid
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora
sample_idx = 0
scheduler_dict = {
"Euler": EulerDiscreteScheduler,
"PNDM": PNDMScheduler,
"DDIM": DDIMScheduler,
}
css = """
.toolbutton {
margin-buttom: 0em 0em 0em 0em;
max-width: 2.5em;
min-width: 2.5em !important;
height: 2.5em;
}
"""
class AnimateController:
def __init__(self):
# config dirs
self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion")
self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module")
self.personalized_model_dir = os.path.join(self.basedir, "models", "DreamBooth_LoRA")
self.savedir = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
self.savedir_sample = os.path.join(self.savedir, "sample")
os.makedirs(self.savedir, exist_ok=True)
self.stable_diffusion_list = []
self.motion_module_list = []
self.personalized_model_list = []
self.refresh_stable_diffusion()
self.refresh_motion_module()
self.refresh_personalized_model()
# config models
self.tokenizer = None
self.text_encoder = None
self.vae = None
self.unet = None
self.pipeline = None
self.lora_model_state_dict = {}
self.inference_config = OmegaConf.load("configs/inference/inference.yaml")
def refresh_stable_diffusion(self):
self.stable_diffusion_list = glob(os.path.join(self.stable_diffusion_dir, "*/"))
def refresh_motion_module(self):
motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt"))
self.motion_module_list = [os.path.basename(p) for p in motion_module_list]
def refresh_personalized_model(self):
personalized_model_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors"))
self.personalized_model_list = [os.path.basename(p) for p in personalized_model_list]
def update_stable_diffusion(self, stable_diffusion_dropdown):
self.tokenizer = CLIPTokenizer.from_pretrained(stable_diffusion_dropdown, subfolder="tokenizer")
self.text_encoder = CLIPTextModel.from_pretrained(stable_diffusion_dropdown, subfolder="text_encoder").cuda()
self.vae = AutoencoderKL.from_pretrained(stable_diffusion_dropdown, subfolder="vae").cuda()
self.unet = UNet3DConditionModel.from_pretrained_2d(stable_diffusion_dropdown, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
return gr.Dropdown.update()
def update_motion_module(self, motion_module_dropdown):
if self.unet is None:
gr.Info(f"Please select a pretrained model path.")
return gr.Dropdown.update(value=None)
else:
motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown)
motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu")
missing, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False)
assert len(unexpected) == 0
return gr.Dropdown.update()
def update_base_model(self, base_model_dropdown):
if self.unet is None:
gr.Info(f"Please select a pretrained model path.")
return gr.Dropdown.update(value=None)
else:
base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown)
base_model_state_dict = {}
with safe_open(base_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys():
base_model_state_dict[key] = f.get_tensor(key)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(base_model_state_dict, self.vae.config)
self.vae.load_state_dict(converted_vae_checkpoint)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(base_model_state_dict, self.unet.config)
self.unet.load_state_dict(converted_unet_checkpoint, strict=False)
self.text_encoder = convert_ldm_clip_checkpoint(base_model_state_dict)
return gr.Dropdown.update()
def update_lora_model(self, lora_model_dropdown):
lora_model_dropdown = os.path.join(self.personalized_model_dir, lora_model_dropdown)
self.lora_model_state_dict = {}
if lora_model_dropdown == "none": pass
else:
with safe_open(lora_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys():
self.lora_model_state_dict[key] = f.get_tensor(key)
return gr.Dropdown.update()
def animate(
self,
stable_diffusion_dropdown,
motion_module_dropdown,
base_model_dropdown,
lora_alpha_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
width_slider,
length_slider,
height_slider,
cfg_scale_slider,
seed_textbox
):
if self.unet is None:
raise gr.Error(f"Please select a pretrained model path.")
if motion_module_dropdown == "":
raise gr.Error(f"Please select a motion module.")
if base_model_dropdown == "":
raise gr.Error(f"Please select a base DreamBooth model.")
if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention()
pipeline = AnimationPipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet,
scheduler=scheduler_dict[sampler_dropdown](**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs))
).to("cuda")
if self.lora_model_state_dict != {}:
pipeline = convert_lora(pipeline, self.lora_model_state_dict, alpha=lora_alpha_slider)
pipeline.to("cuda")
if seed_textbox != -1 and seed_textbox != "": torch.manual_seed(int(seed_textbox))
else: torch.seed()
seed = torch.initial_seed()
sample = pipeline(
prompt_textbox,
negative_prompt = negative_prompt_textbox,
num_inference_steps = sample_step_slider,
guidance_scale = cfg_scale_slider,
width = width_slider,
height = height_slider,
video_length = length_slider,
).videos
save_sample_path = os.path.join(self.savedir_sample, f"{sample_idx}.mp4")
save_videos_grid(sample, save_sample_path)
sample_config = {
"prompt": prompt_textbox,
"n_prompt": negative_prompt_textbox,
"sampler": sampler_dropdown,
"num_inference_steps": sample_step_slider,
"guidance_scale": cfg_scale_slider,
"width": width_slider,
"height": height_slider,
"video_length": length_slider,
"seed": seed
}
json_str = json.dumps(sample_config, indent=4)
with open(os.path.join(self.savedir, "logs.json"), "a") as f:
f.write(json_str)
f.write("\n\n")
return gr.Video.update(value=save_sample_path)
controller = AnimateController()
def ui():
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# [AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning](https://arxiv.org/abs/2307.04725)
Yuwei Guo, Ceyuan Yang*, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai (*Corresponding Author)<br>
[Arxiv Report](https://arxiv.org/abs/2307.04725) | [Project Page](https://animatediff.github.io/) | [Github](https://github.com/guoyww/animatediff/)
"""
)
with gr.Column(variant="panel"):
gr.Markdown(
"""
### 1. Model checkpoints (select pretrained model path first).
"""
)
with gr.Row():
stable_diffusion_dropdown = gr.Dropdown(
label="Pretrained Model Path",
choices=controller.stable_diffusion_list,
interactive=True,
)
stable_diffusion_dropdown.change(fn=controller.update_stable_diffusion, inputs=[stable_diffusion_dropdown], outputs=[stable_diffusion_dropdown])
stable_diffusion_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_stable_diffusion():
controller.refresh_stable_diffusion()
return gr.Dropdown.update(choices=controller.stable_diffusion_list)
stable_diffusion_refresh_button.click(fn=update_stable_diffusion, inputs=[], outputs=[stable_diffusion_dropdown])
with gr.Row():
motion_module_dropdown = gr.Dropdown(
label="Select motion module",
choices=controller.motion_module_list,
interactive=True,
)
motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown])
motion_module_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_motion_module():
controller.refresh_motion_module()
return gr.Dropdown.update(choices=controller.motion_module_list)
motion_module_refresh_button.click(fn=update_motion_module, inputs=[], outputs=[motion_module_dropdown])
base_model_dropdown = gr.Dropdown(
label="Select base Dreambooth model (required)",
choices=controller.personalized_model_list,
interactive=True,
)
base_model_dropdown.change(fn=controller.update_base_model, inputs=[base_model_dropdown], outputs=[base_model_dropdown])
lora_model_dropdown = gr.Dropdown(
label="Select LoRA model (optional)",
choices=["none"] + controller.personalized_model_list,
value="none",
interactive=True,
)
lora_model_dropdown.change(fn=controller.update_lora_model, inputs=[lora_model_dropdown], outputs=[lora_model_dropdown])
lora_alpha_slider = gr.Slider(label="LoRA alpha", value=0.8, minimum=0, maximum=2, interactive=True)
personalized_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_personalized_model():
controller.refresh_personalized_model()
return [
gr.Dropdown.update(choices=controller.personalized_model_list),
gr.Dropdown.update(choices=["none"] + controller.personalized_model_list)
]
personalized_refresh_button.click(fn=update_personalized_model, inputs=[], outputs=[base_model_dropdown, lora_model_dropdown])
with gr.Column(variant="panel"):
gr.Markdown(
"""
### 2. Configs for AnimateDiff.
"""
)
prompt_textbox = gr.Textbox(label="Prompt", lines=2)
negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=2)
with gr.Row().style(equal_height=False):
with gr.Column():
with gr.Row():
sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0])
sample_step_slider = gr.Slider(label="Sampling steps", value=25, minimum=10, maximum=100, step=1)
width_slider = gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64)
height_slider = gr.Slider(label="Height", value=512, minimum=256, maximum=1024, step=64)
length_slider = gr.Slider(label="Animation length", value=16, minimum=8, maximum=24, step=1)
cfg_scale_slider = gr.Slider(label="CFG Scale", value=7.5, minimum=0, maximum=20)
with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=-1)
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)), inputs=[], outputs=[seed_textbox])
generate_button = gr.Button(value="Generate", variant='primary')
result_video = gr.Video(label="Generated Animation", interactive=False)
generate_button.click(
fn=controller.animate,
inputs=[
stable_diffusion_dropdown,
motion_module_dropdown,
base_model_dropdown,
lora_alpha_slider,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
width_slider,
length_slider,
height_slider,
cfg_scale_slider,
seed_textbox,
],
outputs=[result_video]
)
return demo
if __name__ == "__main__":
demo = ui()
demo.launch(share=True)