bigstorm commited on
Commit
4b4db88
1 Parent(s): f14704b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +340 -332
README.md CHANGED
@@ -1,333 +1,341 @@
1
- ---
2
- base_model: NousResearch/Hermes-2-Pro-Llama-3-8B
3
- tags:
4
- - Llama-3
5
- - instruct
6
- - finetune
7
- - chatml
8
- - DPO
9
- - RLHF
10
- - gpt4
11
- - synthetic data
12
- - distillation
13
- - function calling
14
- - json mode
15
- - axolotl
16
- - merges
17
- model-index:
18
- - name: Hermes-2-Pro-Llama-3-Instruct-8B-Merge
19
- results: []
20
- language:
21
- - en
22
- datasets:
23
- - teknium/OpenHermes-2.5
24
- widget:
25
- - example_title: Hermes 2 Pro Llama-3 Instruct Merge
26
- messages:
27
- - role: system
28
- content: >-
29
- You are a sentient, superintelligent artificial general intelligence, here
30
- to teach and assist me.
31
- - role: user
32
- content: >-
33
- Write a short story about Goku discovering kirby has teamed up with Majin
34
- Buu to destroy the world.
35
- license: apache-2.0
36
- ---
37
- # - Hermes-2 Θ Llama-3 8B
38
-
39
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HQnQmNM1L3KXGhp0wUzHH.png)
40
-
41
- ## Model Description
42
-
43
- Hermes-2 Θ (Theta) is the first experimental merged model released by [Nous Research](https://nousresearch.com/), in collaboration with Charles Goddard at [Arcee](https://www.arcee.ai/), the team behind MergeKit.
44
-
45
- Hermes-2 Θ is a merged and then further RLHF'ed version our excellent Hermes 2 Pro model and Meta's Llama-3 Instruct model to form a new model, Hermes-2 Θ, combining the best of both worlds of each model.
46
-
47
- ## Example Outputs
48
-
49
- ### Create New Mythos:
50
-
51
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/dvKhnSvHdx4nTQIqB9Lpv.png)
52
-
53
- ### Chat with a Meta-Cognitive Entity
54
-
55
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/GwdCqowE6GQylineqehhx.png)
56
-
57
- ### Ask for a structured JSON output:
58
-
59
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/us72aL9gwUXdqSHetRVRV.png)
60
-
61
-
62
- # Prompt Format
63
-
64
- Hermes 2 Θ uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.
65
-
66
- System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
67
-
68
- This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
69
-
70
- This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
71
-
72
- Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
73
- ```
74
- <|im_start|>system
75
- You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
76
- <|im_start|>user
77
- Hello, who are you?<|im_end|>
78
- <|im_start|>assistant
79
- Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
80
- ```
81
-
82
- This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
83
- `tokenizer.apply_chat_template()` method:
84
-
85
- ```python
86
- messages = [
87
- {"role": "system", "content": "You are Hermes 2."},
88
- {"role": "user", "content": "Hello, who are you?"}
89
- ]
90
- gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
91
- model.generate(**gen_input)
92
- ```
93
-
94
- When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
95
- that the model continues with an assistant response.
96
-
97
- To utilize the prompt format without a system prompt, simply leave the line out.
98
-
99
- ## Prompt Format for Function Calling
100
-
101
- Our model was trained on specific system prompts and structures for Function Calling. While the system prompt looks complicated, we have created a GitHub repo containing code to easily build these based on real python functions.
102
-
103
- You should use the system role with this message, followed by a function signature json as this example shows here.
104
- ```
105
- <|im_start|>system
106
- You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
107
- <tool_call>
108
- {"arguments": <args-dict>, "name": <function-name>}
109
- </tool_call><|im_end|>
110
- ```
111
-
112
- To complete the function call, create a user prompt that follows the above system prompt, like so:
113
- ```
114
- <|im_start|>user
115
- Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
116
- ```
117
-
118
- The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
119
- ```
120
- <|im_start|>assistant
121
- <tool_call>
122
- {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
123
- </tool_call><|im_end|>
124
- ```
125
-
126
- Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
127
- ```
128
- <|im_start|>tool
129
- <tool_response>
130
- {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
131
- </tool_response>
132
- <|im_end|>
133
- ```
134
-
135
- The assistant will then read in that data from the function's response, and generate a natural language response:
136
- ```
137
- <|im_start|>assistant
138
- The stock fundamentals data for Tesla (TSLA) are as follows:
139
- - **Symbol**: TSLA
140
- - **Company Name**: Tesla, Inc.
141
- - **Sector**: Consumer Cyclical
142
- - **Industry**: Auto Manufacturers
143
- - **Market Capitalization**: $566,160,130,480
144
- - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
145
- - **Price-to-Book Ratio (PB Ratio)**: 9.04
146
- - **Dividend Yield**: N/A
147
- - **Trailing Earnings Per Share (EPS)**: $4.3
148
- - **Beta Value of the Stock**: 2.42
149
- - **52-Week High Price of the Stock**: $299.29
150
- - **52-Week Low Price of the Stock**: $152.37
151
-
152
- This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
153
- ```
154
-
155
- ## Prompt Format for JSON Mode / Structured Outputs
156
-
157
- Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
158
-
159
- Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
160
-
161
- ```
162
- <|im_start|>system
163
- You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
164
- ```
165
-
166
- Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
167
-
168
-
169
- # Benchmarks
170
-
171
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/suBbCUIxpcRvhCv6-DBDQ.png)
172
-
173
- ## GPT4All:
174
- ```
175
-
176
- |    Task     |Version| Metric |Value |   |Stderr|
177
-
178
- |-------------|------:|--------|-----:|---|-----:|
179
-
180
- |arc_challenge|      0|acc     |0.5529|±  |0.0145|
181
-
182
- |             |       |acc_norm|0.5870|±  |0.0144|
183
-
184
- |arc_easy     |      0|acc     |0.8371|±  |0.0076|
185
-
186
- |             |       |acc_norm|0.8144|±  |0.0080|
187
-
188
- |boolq        |      1|acc     |0.8599|±  |0.0061|
189
-
190
- |hellaswag    |      0|acc     |0.6133|±  |0.0049|
191
-
192
- |             |       |acc_norm|0.7989|±  |0.0040|
193
-
194
- |openbookqa   |      0|acc     |0.3940|±  |0.0219|
195
-
196
- |             |       |acc_norm|0.4680|±  |0.0223|
197
-
198
- |piqa         |      0|acc     |0.8063|±  |0.0092|
199
-
200
- |             |       |acc_norm|0.8156|±  |0.0090|
201
-
202
- |winogrande   |      0|acc     |0.7372|±  |0.0124|
203
-
204
- ```
205
-
206
- Average: 72.59
207
-
208
- ## AGIEval:
209
- ```
210
- |             Task             |Version| Metric |Value |   |Stderr|
211
- |------------------------------|------:|--------|-----:|---|-----:|
212
- |agieval_aqua_rat              |      0|acc     |0.2441|±  |0.0270|
213
- |                              |       |acc_norm|0.2441|±  |0.0270|
214
- |agieval_logiqa_en             |      0|acc     |0.3687|±  |0.0189|
215
- |                              |       |acc_norm|0.3840|±  |0.0191|
216
- |agieval_lsat_ar               |      0|acc     |0.2304|±  |0.0278|
217
- |                              |       |acc_norm|0.2174|±  |0.0273|
218
- |agieval_lsat_lr               |      0|acc     |0.5471|±  |0.0221|
219
- |                              |       |acc_norm|0.5373|±  |0.0221|
220
- |agieval_lsat_rc               |      0|acc     |0.6617|±  |0.0289|
221
- |                              |       |acc_norm|0.6357|±  |0.0294|
222
- |agieval_sat_en                |      0|acc     |0.7670|±  |0.0295|
223
- |                              |       |acc_norm|0.7379|±  |0.0307|
224
- |agieval_sat_en_without_passage|      0|acc     |0.4417|±  |0.0347|
225
- |                              |       |acc_norm|0.4223|±  |0.0345|
226
- |agieval_sat_math              |      0|acc     |0.4000|±  |0.0331|
227
- |                              |       |acc_norm|0.3455|±  |0.0321|
228
- ```
229
-
230
- Average: 44.05
231
-
232
- ## BigBench:
233
-
234
- ```
235
-
236
- |                      Task                      |Version|       Metric        |Value |   |Stderr|
237
- |------------------------------------------------|------:|---------------------|-----:|---|-----:|
238
- |bigbench_causal_judgement                       |      0|multiple_choice_grade|0.6000|±  |0.0356|
239
- |bigbench_date_understanding                     |      0|multiple_choice_grade|0.6585|±  |0.0247|
240
- |bigbench_disambiguation_qa                      |      0|multiple_choice_grade|0.3178|±  |0.0290|
241
- |bigbench_geometric_shapes                       |      0|multiple_choice_grade|0.2340|±  |0.0224|
242
- |                                                |       |exact_str_match      |0.0000|±  |0.0000|
243
- |bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|0.2980|±  |0.0205|
244
- |bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|0.2057|±  |0.0153|
245
- |bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|0.5367|±  |0.0288|
246
- |bigbench_movie_recommendation                   |      0|multiple_choice_grade|0.4040|±  |0.0220|
247
- |bigbench_navigate                               |      0|multiple_choice_grade|0.4970|±  |0.0158|
248
- |bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|0.7075|±  |0.0102|
249
- |bigbench_ruin_names                             |      0|multiple_choice_grade|0.4821|±  |0.0236|
250
- |bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|0.2295|±  |0.0133|
251
- |bigbench_snarks                                 |      0|multiple_choice_grade|0.6906|±  |0.0345|
252
- |bigbench_sports_understanding                   |      0|multiple_choice_grade|0.5375|±  |0.0159|
253
- |bigbench_temporal_sequences                     |      0|multiple_choice_grade|0.6270|±  |0.0153|
254
- |bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|0.2216|±  |0.0118|
255
- |bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|0.1594|±  |0.0088|
256
- |bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|0.5367|±  |0.0288|
257
- ```
258
-
259
- Average: 44.13
260
-
261
- **IFEval**: 72.64
262
-
263
- **MT_Bench**: Turn 1 - 8.3875, Turn 2 - 8.00625, Average - 8.196875
264
-
265
- # Inference Code
266
-
267
- Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
268
-
269
- Note: To use function calling, you should see the github repo above.
270
-
271
- ```python
272
- # Code to inference Hermes with HF Transformers
273
- # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
274
-
275
- import torch
276
- from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
277
- import bitsandbytes, flash_attn
278
-
279
- tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Theta-Llama-3-8B', trust_remote_code=True)
280
- model = LlamaForCausalLM.from_pretrained(
281
- "NousResearch/Hermes-2-Theta-Llama-3-8B",
282
- torch_dtype=torch.float16,
283
- device_map="auto",
284
- load_in_8bit=False,
285
- load_in_4bit=True,
286
- use_flash_attention_2=True
287
- )
288
-
289
- prompts = [
290
- """<|im_start|>system
291
- You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
292
- <|im_start|>user
293
- Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
294
- <|im_start|>assistant""",
295
- ]
296
-
297
- for chat in prompts:
298
- print(chat)
299
- input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
300
- generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
301
- response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
302
- print(f"Response: {response}")
303
- ```
304
-
305
-
306
- ## Inference Code for Function Calling:
307
-
308
- All code for utilizing, parsing, and building function calling templates is available on our github:
309
- [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
310
-
311
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
312
-
313
- # Chat Interfaces
314
-
315
- When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
316
- In LM-Studio, simply select the ChatML Prefix on the settings side pane:
317
-
318
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)
319
-
320
-
321
- ## Quantized Versions:
322
-
323
- GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B-GGUF
324
-
325
- # How to cite:
326
-
327
- ```bibtext
328
- @misc{Hermes-2-Theta-Llama-3-8B,
329
- url={[https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B][NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B))},
330
- title={Hermes-2-Theta-Llama-3-8B},
331
- author={"Teknium", Charles Goddard, "interstellarninja", "theemozilla", "karan4d", "huemin_art"}
332
- }
 
 
 
 
 
 
 
 
333
  ```
 
1
+ ---
2
+ base_model: NousResearch/Hermes-2-Pro-Llama-3-8B
3
+ tags:
4
+ - Llama-3
5
+ - instruct
6
+ - finetune
7
+ - chatml
8
+ - DPO
9
+ - RLHF
10
+ - gpt4
11
+ - synthetic data
12
+ - distillation
13
+ - function calling
14
+ - json mode
15
+ - axolotl
16
+ - merges
17
+ model-index:
18
+ - name: Hermes-2-Pro-Llama-3-Instruct-8B-Merge
19
+ results: []
20
+ language:
21
+ - en
22
+ datasets:
23
+ - teknium/OpenHermes-2.5
24
+ widget:
25
+ - example_title: Hermes 2 Pro Llama-3 Instruct Merge
26
+ messages:
27
+ - role: system
28
+ content: >-
29
+ You are a sentient, superintelligent artificial general intelligence, here
30
+ to teach and assist me.
31
+ - role: user
32
+ content: >-
33
+ Write a short story about Goku discovering kirby has teamed up with Majin
34
+ Buu to destroy the world.
35
+ license: apache-2.0
36
+ ---
37
+
38
+ # Exl2 Quantization 8.0BPW 8HB
39
+
40
+ - 8 head bits
41
+ - 8.0 bpw target
42
+
43
+ Enjoy! Feel free to reach out for other quants, or BPW levels.
44
+
45
+ # - Hermes-2 Θ Llama-3 8B
46
+
47
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/HQnQmNM1L3KXGhp0wUzHH.png)
48
+
49
+ ## Model Description
50
+
51
+ Hermes-2 Θ (Theta) is the first experimental merged model released by [Nous Research](https://nousresearch.com/), in collaboration with Charles Goddard at [Arcee](https://www.arcee.ai/), the team behind MergeKit.
52
+
53
+ Hermes-2 Θ is a merged and then further RLHF'ed version our excellent Hermes 2 Pro model and Meta's Llama-3 Instruct model to form a new model, Hermes-2 Θ, combining the best of both worlds of each model.
54
+
55
+ ## Example Outputs
56
+
57
+ ### Create New Mythos:
58
+
59
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/dvKhnSvHdx4nTQIqB9Lpv.png)
60
+
61
+ ### Chat with a Meta-Cognitive Entity
62
+
63
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/GwdCqowE6GQylineqehhx.png)
64
+
65
+ ### Ask for a structured JSON output:
66
+
67
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/us72aL9gwUXdqSHetRVRV.png)
68
+
69
+
70
+ # Prompt Format
71
+
72
+ Hermes 2 Θ uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue.
73
+
74
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
75
+
76
+ This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns.
77
+
78
+ This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI.
79
+
80
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
81
+ ```
82
+ <|im_start|>system
83
+ You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|>
84
+ <|im_start|>user
85
+ Hello, who are you?<|im_end|>
86
+ <|im_start|>assistant
87
+ Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|>
88
+ ```
89
+
90
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
91
+ `tokenizer.apply_chat_template()` method:
92
+
93
+ ```python
94
+ messages = [
95
+ {"role": "system", "content": "You are Hermes 2."},
96
+ {"role": "user", "content": "Hello, who are you?"}
97
+ ]
98
+ gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
99
+ model.generate(**gen_input)
100
+ ```
101
+
102
+ When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure
103
+ that the model continues with an assistant response.
104
+
105
+ To utilize the prompt format without a system prompt, simply leave the line out.
106
+
107
+ ## Prompt Format for Function Calling
108
+
109
+ Our model was trained on specific system prompts and structures for Function Calling. While the system prompt looks complicated, we have created a GitHub repo containing code to easily build these based on real python functions.
110
+
111
+ You should use the system role with this message, followed by a function signature json as this example shows here.
112
+ ```
113
+ <|im_start|>system
114
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
115
+ <tool_call>
116
+ {"arguments": <args-dict>, "name": <function-name>}
117
+ </tool_call><|im_end|>
118
+ ```
119
+
120
+ To complete the function call, create a user prompt that follows the above system prompt, like so:
121
+ ```
122
+ <|im_start|>user
123
+ Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|>
124
+ ```
125
+
126
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
127
+ ```
128
+ <|im_start|>assistant
129
+ <tool_call>
130
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
131
+ </tool_call><|im_end|>
132
+ ```
133
+
134
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
135
+ ```
136
+ <|im_start|>tool
137
+ <tool_response>
138
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
139
+ </tool_response>
140
+ <|im_end|>
141
+ ```
142
+
143
+ The assistant will then read in that data from the function's response, and generate a natural language response:
144
+ ```
145
+ <|im_start|>assistant
146
+ The stock fundamentals data for Tesla (TSLA) are as follows:
147
+ - **Symbol**: TSLA
148
+ - **Company Name**: Tesla, Inc.
149
+ - **Sector**: Consumer Cyclical
150
+ - **Industry**: Auto Manufacturers
151
+ - **Market Capitalization**: $566,160,130,480
152
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
153
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
154
+ - **Dividend Yield**: N/A
155
+ - **Trailing Earnings Per Share (EPS)**: $4.3
156
+ - **Beta Value of the Stock**: 2.42
157
+ - **52-Week High Price of the Stock**: $299.29
158
+ - **52-Week Low Price of the Stock**: $152.37
159
+
160
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|>
161
+ ```
162
+
163
+ ## Prompt Format for JSON Mode / Structured Outputs
164
+
165
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
166
+
167
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
168
+
169
+ ```
170
+ <|im_start|>system
171
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|>
172
+ ```
173
+
174
+ Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON.
175
+
176
+
177
+ # Benchmarks
178
+
179
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/suBbCUIxpcRvhCv6-DBDQ.png)
180
+
181
+ ## GPT4All:
182
+ ```
183
+
184
+ |    Task     |Version| Metric |Value |   |Stderr|
185
+
186
+ |-------------|------:|--------|-----:|---|-----:|
187
+
188
+ |arc_challenge|      0|acc     |0.5529|±  |0.0145|
189
+
190
+ |             |       |acc_norm|0.5870|±  |0.0144|
191
+
192
+ |arc_easy     |      0|acc     |0.8371|±  |0.0076|
193
+
194
+ |             |       |acc_norm|0.8144|±  |0.0080|
195
+
196
+ |boolq        |      1|acc     |0.8599|±  |0.0061|
197
+
198
+ |hellaswag    |      0|acc     |0.6133|±  |0.0049|
199
+
200
+ |             |       |acc_norm|0.7989|±  |0.0040|
201
+
202
+ |openbookqa   |      0|acc     |0.3940|±  |0.0219|
203
+
204
+ |             |       |acc_norm|0.4680|±  |0.0223|
205
+
206
+ |piqa         |      0|acc     |0.8063|±  |0.0092|
207
+
208
+ |             |       |acc_norm|0.8156|±  |0.0090|
209
+
210
+ |winogrande   |      0|acc     |0.7372|±  |0.0124|
211
+
212
+ ```
213
+
214
+ Average: 72.59
215
+
216
+ ## AGIEval:
217
+ ```
218
+ |             Task             |Version| Metric |Value |   |Stderr|
219
+ |------------------------------|------:|--------|-----:|---|-----:|
220
+ |agieval_aqua_rat              |      0|acc     |0.2441|±  |0.0270|
221
+ |                              |       |acc_norm|0.2441|±  |0.0270|
222
+ |agieval_logiqa_en             |      0|acc     |0.3687|±  |0.0189|
223
+ |                              |       |acc_norm|0.3840|±  |0.0191|
224
+ |agieval_lsat_ar               |      0|acc     |0.2304|±  |0.0278|
225
+ |                              |       |acc_norm|0.2174|±  |0.0273|
226
+ |agieval_lsat_lr               |      0|acc     |0.5471|±  |0.0221|
227
+ |                              |       |acc_norm|0.5373|±  |0.0221|
228
+ |agieval_lsat_rc               |      0|acc     |0.6617|±  |0.0289|
229
+ |                              |       |acc_norm|0.6357|±  |0.0294|
230
+ |agieval_sat_en                |      0|acc     |0.7670|±  |0.0295|
231
+ |                              |       |acc_norm|0.7379|±  |0.0307|
232
+ |agieval_sat_en_without_passage|      0|acc     |0.4417|±  |0.0347|
233
+ |                              |       |acc_norm|0.4223|±  |0.0345|
234
+ |agieval_sat_math              |      0|acc     |0.4000|±  |0.0331|
235
+ |                              |       |acc_norm|0.3455|±  |0.0321|
236
+ ```
237
+
238
+ Average: 44.05
239
+
240
+ ## BigBench:
241
+
242
+ ```
243
+
244
+ |                      Task         ��            |Version|       Metric        |Value |   |Stderr|
245
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
246
+ |bigbench_causal_judgement                       |      0|multiple_choice_grade|0.6000|±  |0.0356|
247
+ |bigbench_date_understanding                     |      0|multiple_choice_grade|0.6585|±  |0.0247|
248
+ |bigbench_disambiguation_qa                      |      0|multiple_choice_grade|0.3178|±  |0.0290|
249
+ |bigbench_geometric_shapes                       |      0|multiple_choice_grade|0.2340|±  |0.0224|
250
+ |                                                |       |exact_str_match      |0.0000|±  |0.0000|
251
+ |bigbench_logical_deduction_five_objects         |      0|multiple_choice_grade|0.2980|±  |0.0205|
252
+ |bigbench_logical_deduction_seven_objects        |      0|multiple_choice_grade|0.2057|±  |0.0153|
253
+ |bigbench_logical_deduction_three_objects        |      0|multiple_choice_grade|0.5367|±  |0.0288|
254
+ |bigbench_movie_recommendation                   |      0|multiple_choice_grade|0.4040|±  |0.0220|
255
+ |bigbench_navigate                               |      0|multiple_choice_grade|0.4970|±  |0.0158|
256
+ |bigbench_reasoning_about_colored_objects        |      0|multiple_choice_grade|0.7075|±  |0.0102|
257
+ |bigbench_ruin_names                             |      0|multiple_choice_grade|0.4821|±  |0.0236|
258
+ |bigbench_salient_translation_error_detection    |      0|multiple_choice_grade|0.2295|±  |0.0133|
259
+ |bigbench_snarks                                 |      0|multiple_choice_grade|0.6906|±  |0.0345|
260
+ |bigbench_sports_understanding                   |      0|multiple_choice_grade|0.5375|±  |0.0159|
261
+ |bigbench_temporal_sequences                     |      0|multiple_choice_grade|0.6270|±  |0.0153|
262
+ |bigbench_tracking_shuffled_objects_five_objects |      0|multiple_choice_grade|0.2216|±  |0.0118|
263
+ |bigbench_tracking_shuffled_objects_seven_objects|      0|multiple_choice_grade|0.1594|±  |0.0088|
264
+ |bigbench_tracking_shuffled_objects_three_objects|      0|multiple_choice_grade|0.5367|±  |0.0288|
265
+ ```
266
+
267
+ Average: 44.13
268
+
269
+ **IFEval**: 72.64
270
+
271
+ **MT_Bench**: Turn 1 - 8.3875, Turn 2 - 8.00625, Average - 8.196875
272
+
273
+ # Inference Code
274
+
275
+ Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM)
276
+
277
+ Note: To use function calling, you should see the github repo above.
278
+
279
+ ```python
280
+ # Code to inference Hermes with HF Transformers
281
+ # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages
282
+
283
+ import torch
284
+ from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM
285
+ import bitsandbytes, flash_attn
286
+
287
+ tokenizer = AutoTokenizer.from_pretrained('NousResearch/Hermes-2-Theta-Llama-3-8B', trust_remote_code=True)
288
+ model = LlamaForCausalLM.from_pretrained(
289
+ "NousResearch/Hermes-2-Theta-Llama-3-8B",
290
+ torch_dtype=torch.float16,
291
+ device_map="auto",
292
+ load_in_8bit=False,
293
+ load_in_4bit=True,
294
+ use_flash_attention_2=True
295
+ )
296
+
297
+ prompts = [
298
+ """<|im_start|>system
299
+ You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|>
300
+ <|im_start|>user
301
+ Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|>
302
+ <|im_start|>assistant""",
303
+ ]
304
+
305
+ for chat in prompts:
306
+ print(chat)
307
+ input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda")
308
+ generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
309
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
310
+ print(f"Response: {response}")
311
+ ```
312
+
313
+
314
+ ## Inference Code for Function Calling:
315
+
316
+ All code for utilizing, parsing, and building function calling templates is available on our github:
317
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
318
+
319
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
320
+
321
+ # Chat Interfaces
322
+
323
+ When quantized versions of the model are released, I recommend using LM Studio for chatting with Hermes 2 Pro. It does not support function calling - for that use our github repo. It is a GUI application that utilizes GGUF models with a llama.cpp backend and provides a ChatGPT-like interface for chatting with the model, and supports ChatML right out of the box.
324
+ In LM-Studio, simply select the ChatML Prefix on the settings side pane:
325
+
326
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/ls6WqV-GSxMw2RA3GuQiN.png)
327
+
328
+
329
+ ## Quantized Versions:
330
+
331
+ GGUF Versions Available Here: https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B-GGUF
332
+
333
+ # How to cite:
334
+
335
+ ```bibtext
336
+ @misc{Hermes-2-Theta-Llama-3-8B,
337
+ url={[https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B][NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B))},
338
+ title={Hermes-2-Theta-Llama-3-8B},
339
+ author={"Teknium", Charles Goddard, "interstellarninja", "theemozilla", "karan4d", "huemin_art"}
340
+ }
341
  ```