TimeRobber
commited on
Commit
•
4333b95
1
Parent(s):
7dad45b
Update README.md
Browse files
README.md
CHANGED
@@ -69,7 +69,7 @@ language:
|
|
69 |
- my
|
70 |
- ne
|
71 |
- nl
|
72 |
-
- no
|
73 |
- ny
|
74 |
- pa
|
75 |
- pl
|
@@ -108,65 +108,78 @@ language:
|
|
108 |
tags:
|
109 |
- text2text-generation
|
110 |
widget:
|
111 |
-
- text:
|
112 |
-
|
113 |
-
<
|
114 |
-
|
115 |
-
|
116 |
-
</
|
117 |
-
<tr>
|
118 |
-
<td><a href=https://huggingface.co/datasets/bigscience/
|
119 |
-
<td>Mixture of 13 training tasks in 46 languages with
|
120 |
-
|
121 |
-
</
|
122 |
-
|
123 |
-
<td><a
|
124 |
-
|
125 |
-
<td
|
126 |
-
</tr>
|
127 |
-
<
|
128 |
-
|
129 |
-
<td
|
130 |
-
|
131 |
-
</
|
132 |
-
<tr>
|
133 |
-
<td><a href=https://huggingface.co/datasets/
|
134 |
-
<td
|
135 |
-
|
136 |
-
</
|
137 |
-
<
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
example_title:
|
145 |
-
- text:
|
146 |
-
|
147 |
-
|
148 |
-
example_title:
|
149 |
-
- text:
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
example_title:
|
156 |
-
- text:
|
157 |
-
|
158 |
-
|
159 |
-
example_title:
|
160 |
-
- text:
|
161 |
-
example_title:
|
162 |
-
- text:
|
163 |
-
example_title:
|
164 |
-
- text:
|
165 |
-
|
166 |
-
|
167 |
-
example_title:
|
168 |
-
- text:
|
169 |
-
example_title:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
model-index:
|
171 |
- name: mt0-xxl
|
172 |
results:
|
@@ -268,7 +281,7 @@ model-index:
|
|
268 |
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
269 |
metrics:
|
270 |
- type: Accuracy
|
271 |
-
value: 43
|
272 |
- task:
|
273 |
type: Natural language inference
|
274 |
dataset:
|
@@ -345,7 +358,7 @@ model-index:
|
|
345 |
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
346 |
metrics:
|
347 |
- type: Accuracy
|
348 |
-
value: 59
|
349 |
- task:
|
350 |
type: Natural language inference
|
351 |
dataset:
|
@@ -472,7 +485,7 @@ model-index:
|
|
472 |
dataset:
|
473 |
type: story_cloze
|
474 |
name: StoryCloze (2016)
|
475 |
-
config:
|
476 |
split: validation
|
477 |
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
478 |
metrics:
|
@@ -488,7 +501,7 @@ model-index:
|
|
488 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
489 |
metrics:
|
490 |
- type: Accuracy
|
491 |
-
value: 93
|
492 |
- task:
|
493 |
type: Sentence completion
|
494 |
dataset:
|
@@ -499,7 +512,7 @@ model-index:
|
|
499 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
500 |
metrics:
|
501 |
- type: Accuracy
|
502 |
-
value: 79
|
503 |
- task:
|
504 |
type: Sentence completion
|
505 |
dataset:
|
@@ -510,7 +523,7 @@ model-index:
|
|
510 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
511 |
metrics:
|
512 |
- type: Accuracy
|
513 |
-
value: 81
|
514 |
- task:
|
515 |
type: Sentence completion
|
516 |
dataset:
|
@@ -521,7 +534,7 @@ model-index:
|
|
521 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
522 |
metrics:
|
523 |
- type: Accuracy
|
524 |
-
value: 92
|
525 |
- task:
|
526 |
type: Sentence completion
|
527 |
dataset:
|
@@ -532,7 +545,7 @@ model-index:
|
|
532 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
533 |
metrics:
|
534 |
- type: Accuracy
|
535 |
-
value: 90
|
536 |
- task:
|
537 |
type: Sentence completion
|
538 |
dataset:
|
@@ -543,7 +556,7 @@ model-index:
|
|
543 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
544 |
metrics:
|
545 |
- type: Accuracy
|
546 |
-
value: 59
|
547 |
- task:
|
548 |
type: Sentence completion
|
549 |
dataset:
|
@@ -554,7 +567,7 @@ model-index:
|
|
554 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
555 |
metrics:
|
556 |
- type: Accuracy
|
557 |
-
value: 79
|
558 |
- task:
|
559 |
type: Sentence completion
|
560 |
dataset:
|
@@ -565,7 +578,7 @@ model-index:
|
|
565 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
566 |
metrics:
|
567 |
- type: Accuracy
|
568 |
-
value: 84
|
569 |
- task:
|
570 |
type: Sentence completion
|
571 |
dataset:
|
@@ -576,7 +589,7 @@ model-index:
|
|
576 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
577 |
metrics:
|
578 |
- type: Accuracy
|
579 |
-
value: 77
|
580 |
- task:
|
581 |
type: Sentence completion
|
582 |
dataset:
|
@@ -587,7 +600,7 @@ model-index:
|
|
587 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
588 |
metrics:
|
589 |
- type: Accuracy
|
590 |
-
value: 79
|
591 |
- task:
|
592 |
type: Sentence completion
|
593 |
dataset:
|
@@ -598,7 +611,7 @@ model-index:
|
|
598 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
599 |
metrics:
|
600 |
- type: Accuracy
|
601 |
-
value: 88
|
602 |
- task:
|
603 |
type: Sentence completion
|
604 |
dataset:
|
@@ -609,7 +622,7 @@ model-index:
|
|
609 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
610 |
metrics:
|
611 |
- type: Accuracy
|
612 |
-
value: 89
|
613 |
- task:
|
614 |
type: Sentence completion
|
615 |
dataset:
|
@@ -720,6 +733,7 @@ model-index:
|
|
720 |
metrics:
|
721 |
- type: Accuracy
|
722 |
value: 93.85
|
|
|
723 |
---
|
724 |
|
725 |
![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)
|
|
|
69 |
- my
|
70 |
- ne
|
71 |
- nl
|
72 |
+
- 'no'
|
73 |
- ny
|
74 |
- pa
|
75 |
- pl
|
|
|
108 |
tags:
|
109 |
- text2text-generation
|
110 |
widget:
|
111 |
+
- text: >-
|
112 |
+
<table> <tr> <th>Name</th> <th>Explanation</th> <th>Example models</th>
|
113 |
+
</tr> <tr> <td><a
|
114 |
+
href=https://huggingface.co/datasets/bigscience/xP3>xP3</a></t> <td>Mixture
|
115 |
+
of 13 training tasks in 46 languages with English prompts</td> <td><a
|
116 |
+
href=https://huggingface.co/bigscience/bloomz>bloomz</a> & <a
|
117 |
+
href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td> </tr> <tr>
|
118 |
+
<td><a href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a></t>
|
119 |
+
<td>Mixture of 13 training tasks in 46 languages with prompts in 20
|
120 |
+
languages (machine-translated from English)</td> <td><a
|
121 |
+
href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a> & <a
|
122 |
+
href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td> </tr>
|
123 |
+
<tr> <td><a
|
124 |
+
href=https://huggingface.co/datasets/bigscience/xP3all>xP3all</a></t>
|
125 |
+
<td>xP3 + our evaluation datasets adding an additional 3 tasks for a total
|
126 |
+
of 16 tasks in 46 languages with English prompts</td> <td></td> </tr> <tr>
|
127 |
+
<td><a
|
128 |
+
href=https://huggingface.co/datasets/bigscience/xP3megds>xP3megds</a></t>
|
129 |
+
<td><a
|
130 |
+
href=https://github.com/bigscience-workshop/Megatron-DeepSpeed>Megatron-DeepSpeed</a>
|
131 |
+
processed version of xP3</td> <td><a
|
132 |
+
href=https://huggingface.co/bigscience/bloomz>bloomz</a></td> </tr> <tr>
|
133 |
+
<td><a href=https://huggingface.co/datasets/Muennighoff/P3>P3</a></t>
|
134 |
+
<td>Repreprocessed version of the English-only <a
|
135 |
+
href=https://huggingface.co/datasets/bigscience/P3>P3</a> with 8 training
|
136 |
+
tasks</td> <td><a
|
137 |
+
href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a> & <a
|
138 |
+
href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td> </tr>
|
139 |
+
</table> Which dataset has the most tasks?
|
140 |
+
example_title: en-en struct-to-text
|
141 |
+
- text: Life is beautiful! Translate to Mongolian.
|
142 |
+
example_title: mn-en translation
|
143 |
+
- text: Le mot japonais «憂鬱» veut dire quoi en Odia?
|
144 |
+
example_title: jp-or-fr translation
|
145 |
+
- text: >-
|
146 |
+
Stell mir eine schwierige Quiz Frage bei der es um Astronomie geht. Bitte
|
147 |
+
stell die Frage auf Norwegisch.
|
148 |
+
example_title: de-nb quiz
|
149 |
+
- text: >-
|
150 |
+
We present BLOOMZ & mT0, a family of models capable of following human
|
151 |
+
instructions in dozens of languages zero-shot. We finetune BLOOM & mT5
|
152 |
+
pretrained multilingual language models on our crosslingual task mixture
|
153 |
+
(xP3) and find our resulting models capable of crosslingual generalization
|
154 |
+
to unseen tasks & languages. What are the keywords in Chinese?
|
155 |
+
example_title: zh-en keywords
|
156 |
+
- text: >-
|
157 |
+
一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous
|
158 |
+
review as positive, neutral or negative?
|
159 |
+
example_title: zh-en sentiment
|
160 |
+
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
|
161 |
+
example_title: zh-zh sentiment
|
162 |
+
- text: Suggest at least five related search terms to "Mạng neural nhân tạo".
|
163 |
+
example_title: vi-en query
|
164 |
+
- text: >-
|
165 |
+
Proposez au moins cinq mots clés concernant «Réseau de neurones
|
166 |
+
artificiels».
|
167 |
+
example_title: fr-fr query
|
168 |
+
- text: Explain in a sentence in Telugu what is backpropagation in neural networks.
|
169 |
+
example_title: te-en qa
|
170 |
+
- text: Why is the sky blue?
|
171 |
+
example_title: en-en qa
|
172 |
+
- text: >-
|
173 |
+
Write a fairy tale about a troll saving a princess from a dangerous dragon.
|
174 |
+
The fairy tale is a masterpiece that has achieved praise worldwide and its
|
175 |
+
moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
|
176 |
+
example_title: es-en fable
|
177 |
+
- text: >-
|
178 |
+
Write a fable about wood elves living in a forest that is suddenly invaded
|
179 |
+
by ogres. The fable is a masterpiece that has achieved praise worldwide and
|
180 |
+
its moral is "Violence is the last refuge of the incompetent". Fable (in
|
181 |
+
Hindi):
|
182 |
+
example_title: hi-en fable
|
183 |
model-index:
|
184 |
- name: mt0-xxl
|
185 |
results:
|
|
|
281 |
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
|
282 |
metrics:
|
283 |
- type: Accuracy
|
284 |
+
value: 43
|
285 |
- task:
|
286 |
type: Natural language inference
|
287 |
dataset:
|
|
|
358 |
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
|
359 |
metrics:
|
360 |
- type: Accuracy
|
361 |
+
value: 59
|
362 |
- task:
|
363 |
type: Natural language inference
|
364 |
dataset:
|
|
|
485 |
dataset:
|
486 |
type: story_cloze
|
487 |
name: StoryCloze (2016)
|
488 |
+
config: '2016'
|
489 |
split: validation
|
490 |
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
|
491 |
metrics:
|
|
|
501 |
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
|
502 |
metrics:
|
503 |
- type: Accuracy
|
504 |
+
value: 93
|
505 |
- task:
|
506 |
type: Sentence completion
|
507 |
dataset:
|
|
|
512 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
513 |
metrics:
|
514 |
- type: Accuracy
|
515 |
+
value: 79
|
516 |
- task:
|
517 |
type: Sentence completion
|
518 |
dataset:
|
|
|
523 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
524 |
metrics:
|
525 |
- type: Accuracy
|
526 |
+
value: 81
|
527 |
- task:
|
528 |
type: Sentence completion
|
529 |
dataset:
|
|
|
534 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
535 |
metrics:
|
536 |
- type: Accuracy
|
537 |
+
value: 92
|
538 |
- task:
|
539 |
type: Sentence completion
|
540 |
dataset:
|
|
|
545 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
546 |
metrics:
|
547 |
- type: Accuracy
|
548 |
+
value: 90
|
549 |
- task:
|
550 |
type: Sentence completion
|
551 |
dataset:
|
|
|
556 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
557 |
metrics:
|
558 |
- type: Accuracy
|
559 |
+
value: 59
|
560 |
- task:
|
561 |
type: Sentence completion
|
562 |
dataset:
|
|
|
567 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
568 |
metrics:
|
569 |
- type: Accuracy
|
570 |
+
value: 79
|
571 |
- task:
|
572 |
type: Sentence completion
|
573 |
dataset:
|
|
|
578 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
579 |
metrics:
|
580 |
- type: Accuracy
|
581 |
+
value: 84
|
582 |
- task:
|
583 |
type: Sentence completion
|
584 |
dataset:
|
|
|
589 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
590 |
metrics:
|
591 |
- type: Accuracy
|
592 |
+
value: 77
|
593 |
- task:
|
594 |
type: Sentence completion
|
595 |
dataset:
|
|
|
600 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
601 |
metrics:
|
602 |
- type: Accuracy
|
603 |
+
value: 79
|
604 |
- task:
|
605 |
type: Sentence completion
|
606 |
dataset:
|
|
|
611 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
612 |
metrics:
|
613 |
- type: Accuracy
|
614 |
+
value: 88
|
615 |
- task:
|
616 |
type: Sentence completion
|
617 |
dataset:
|
|
|
622 |
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
|
623 |
metrics:
|
624 |
- type: Accuracy
|
625 |
+
value: 89
|
626 |
- task:
|
627 |
type: Sentence completion
|
628 |
dataset:
|
|
|
733 |
metrics:
|
734 |
- type: Accuracy
|
735 |
value: 93.85
|
736 |
+
pipeline_tag: text2text-generation
|
737 |
---
|
738 |
|
739 |
![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)
|