Update README.md
Browse files
README.md
CHANGED
@@ -149,6 +149,7 @@ Our final models were trained on a different number of steps and sequence length
|
|
149 |
<figure>
|
150 |
|
151 |
<caption>Table 1. Evaluation made by the Barcelona Supercomputing Center of their models and BERTIN (beta, seq len 128).</caption>
|
|
|
152 |
| Dataset | Metric | RoBERTa-b | RoBERTa-l | BETO | mBERT | BERTIN |
|
153 |
|-------------|----------|-----------|-----------|--------|--------|--------|
|
154 |
| UD-POS | F1 | **0.9907** | 0.9901 | 0.9900 | 0.9886 | **0.9904** |
|
@@ -167,6 +168,7 @@ All of our models attained good accuracy values, in the range of 0.65, as can be
|
|
167 |
<figure>
|
168 |
|
169 |
<caption>Table 2. Accuracy for the different language models.</caption>
|
|
|
170 |
| Model | Accuracy |
|
171 |
|----------------------------------------------------|----------|
|
172 |
| bertin-project/bertin-roberta-base-spanish | 0.6547 |
|
@@ -191,6 +193,7 @@ All models trained with max length 512 and batch size 8, using the CoNLL 2002 da
|
|
191 |
<figure>
|
192 |
|
193 |
<caption>Table 3. Results for POS.</caption>
|
|
|
194 |
| Model | F1 | Accuracy |
|
195 |
|----------------------------------------------------|----------|----------|
|
196 |
| bert-base-multilingual-cased | 0.9629 | 0.9687 |
|
@@ -212,6 +215,7 @@ All models trained with max length 512 and batch size 8, using the CoNLL 2002 da
|
|
212 |
<figure>
|
213 |
|
214 |
<caption>Table 4. Results for NER.</caption>
|
|
|
215 |
| Model | F1 | Accuracy |
|
216 |
|----------------------------------------------------|----------|----------|
|
217 |
| bert-base-multilingual-cased | 0.8539 | 0.9779 |
|
@@ -233,6 +237,7 @@ All models trained with max length 512 and batch size 8. These numbers are surpr
|
|
233 |
<figure>
|
234 |
|
235 |
<caption>Table 5. Results for PAWS-X.</caption>
|
|
|
236 |
| Model | Accuracy |
|
237 |
|----------------------------------------------------|----------|
|
238 |
| bert-base-multilingual-cased | 0.5765 |
|
@@ -253,6 +258,7 @@ All models trained with max length 512 and batch size 8. These numbers are surpr
|
|
253 |
<figure>
|
254 |
|
255 |
<caption>Table 6. Results for XNLI with sequence length 256 and batch size 32.</caption>
|
|
|
256 |
| Model | Accuracy |
|
257 |
|----------------------------------------------------|----------|
|
258 |
| bert-base-multilingual-cased | 0.7852 |
|
@@ -270,7 +276,6 @@ All models trained with max length 512 and batch size 8. These numbers are surpr
|
|
270 |
<figure>
|
271 |
|
272 |
<caption>Table 7. Results for XNLI with sequence length 512 and batch size 16.</caption>
|
273 |
-
</figure>
|
274 |
|
275 |
| Model | Accuracy |
|
276 |
|----------------------------------------------------|----------|
|
@@ -283,6 +288,7 @@ All models trained with max length 512 and batch size 8. These numbers are surpr
|
|
283 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.7799 |
|
284 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | 0.7843 |
|
285 |
|
|
|
286 |
|
287 |
# Conclusions
|
288 |
|
|
|
149 |
<figure>
|
150 |
|
151 |
<caption>Table 1. Evaluation made by the Barcelona Supercomputing Center of their models and BERTIN (beta, seq len 128).</caption>
|
152 |
+
|
153 |
| Dataset | Metric | RoBERTa-b | RoBERTa-l | BETO | mBERT | BERTIN |
|
154 |
|-------------|----------|-----------|-----------|--------|--------|--------|
|
155 |
| UD-POS | F1 | **0.9907** | 0.9901 | 0.9900 | 0.9886 | **0.9904** |
|
|
|
168 |
<figure>
|
169 |
|
170 |
<caption>Table 2. Accuracy for the different language models.</caption>
|
171 |
+
|
172 |
| Model | Accuracy |
|
173 |
|----------------------------------------------------|----------|
|
174 |
| bertin-project/bertin-roberta-base-spanish | 0.6547 |
|
|
|
193 |
<figure>
|
194 |
|
195 |
<caption>Table 3. Results for POS.</caption>
|
196 |
+
|
197 |
| Model | F1 | Accuracy |
|
198 |
|----------------------------------------------------|----------|----------|
|
199 |
| bert-base-multilingual-cased | 0.9629 | 0.9687 |
|
|
|
215 |
<figure>
|
216 |
|
217 |
<caption>Table 4. Results for NER.</caption>
|
218 |
+
|
219 |
| Model | F1 | Accuracy |
|
220 |
|----------------------------------------------------|----------|----------|
|
221 |
| bert-base-multilingual-cased | 0.8539 | 0.9779 |
|
|
|
237 |
<figure>
|
238 |
|
239 |
<caption>Table 5. Results for PAWS-X.</caption>
|
240 |
+
|
241 |
| Model | Accuracy |
|
242 |
|----------------------------------------------------|----------|
|
243 |
| bert-base-multilingual-cased | 0.5765 |
|
|
|
258 |
<figure>
|
259 |
|
260 |
<caption>Table 6. Results for XNLI with sequence length 256 and batch size 32.</caption>
|
261 |
+
|
262 |
| Model | Accuracy |
|
263 |
|----------------------------------------------------|----------|
|
264 |
| bert-base-multilingual-cased | 0.7852 |
|
|
|
276 |
<figure>
|
277 |
|
278 |
<caption>Table 7. Results for XNLI with sequence length 512 and batch size 16.</caption>
|
|
|
279 |
|
280 |
| Model | Accuracy |
|
281 |
|----------------------------------------------------|----------|
|
|
|
288 |
| bertin-project/bertin-base-random-exp-512seqlen | 0.7799 |
|
289 |
| bertin-project/bertin-base-gaussian-exp-512seqlen | 0.7843 |
|
290 |
|
291 |
+
</figure>
|
292 |
|
293 |
# Conclusions
|
294 |
|