Update README.md
Browse files
README.md
CHANGED
@@ -188,18 +188,21 @@ All of our models attained good accuracy values, in the range of 0.65, as can be
|
|
188 |
</figure>
|
189 |
|
190 |
We are currently in the process of applying our language models to downstream tasks.
|
191 |
-
|
192 |
-
*
|
193 |
-
*
|
194 |
-
*
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
<figure>
|
197 |
|
198 |
<caption>
|
199 |
-
Table
|
200 |
-
* test
|
201 |
-
* test 2
|
202 |
-
* test 3
|
203 |
</caption>
|
204 |
|
205 |
| Model | POS (F1/Acc) | NER (F1/Acc) | PAWS-X (Acc) | XNLI-256 (Acc) | XNLI-512 (Acc) |
|
@@ -217,7 +220,7 @@ Table x. Dataset for POS nad NER is CoNLL 2002.
|
|
217 |
</figure>
|
218 |
|
219 |
|
220 |
-
|
221 |
Using sequence length 128 we have achieved exact match 50.96 and F1 68.74.
|
222 |
|
223 |
|
@@ -249,7 +252,7 @@ All models trained with max length 512 and batch size 8. These numbers are surpr
|
|
249 |
</figure>
|
250 |
|
251 |
|
252 |
-
|
253 |
|
254 |
<figure>
|
255 |
|
|
|
188 |
</figure>
|
189 |
|
190 |
We are currently in the process of applying our language models to downstream tasks.
|
191 |
+
For simplicity, we will abbreviate the different models as follows:
|
192 |
+
* **BERT-m**: bert-base-multilingual-cased
|
193 |
+
* **BERT-wwm**: dccuchile/bert-base-spanish-wwm-cased
|
194 |
+
* **BSC-BNE**: BSC-TeMU/roberta-base-bne
|
195 |
+
* **Beta**: bertin-project/bertin-roberta-base-spanish
|
196 |
+
* **Random**: bertin-project/bertin-base-random
|
197 |
+
* **Stepwise**: bertin-project/bertin-base-stepwise
|
198 |
+
* **Gaussian**: bertin-project/bertin-base-gaussian
|
199 |
+
* **Random-512**: bertin-project/bertin-base-random-exp-512seqlen
|
200 |
+
* **Gaussian-512**: bertin-project/bertin-base-gaussian-exp-512seqlen
|
201 |
|
202 |
<figure>
|
203 |
|
204 |
<caption>
|
205 |
+
Table 3. Metrics for different downstream tasks, comparing our different models as well as other relevant BERT variations from the literature. Dataset for POS nad NER is CoNLL 2002.
|
|
|
|
|
|
|
206 |
</caption>
|
207 |
|
208 |
| Model | POS (F1/Acc) | NER (F1/Acc) | PAWS-X (Acc) | XNLI-256 (Acc) | XNLI-512 (Acc) |
|
|
|
220 |
</figure>
|
221 |
|
222 |
|
223 |
+
### SQUAD-es
|
224 |
Using sequence length 128 we have achieved exact match 50.96 and F1 68.74.
|
225 |
|
226 |
|
|
|
252 |
</figure>
|
253 |
|
254 |
|
255 |
+
### XNLI
|
256 |
|
257 |
<figure>
|
258 |
|