[paths] train = "./spacy_data/mitral_regurgitation//train.spacy" dev = "./spacy_data/mitral_regurgitation//test.spacy" vectors = null init_tok2vec = null [system] gpu_allocator = null seed = 0 [nlp] lang = "nl" pipeline = ["tok2vec","spancat"] batch_size = 1000 disabled = [] before_creation = null after_creation = null after_pipeline_creation = null tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} vectors = {"@vectors":"spacy.Vectors.v1"} [components] [components.spancat] factory = "spancat_singlelabel" allow_overlap = true negative_weight = 0.6 scorer = {"@scorers":"spacy.spancat_scorer.v1"} spans_key = "sc" [components.spancat.model] @architectures = "spacy.SpanCategorizer.v1" [components.spancat.model.reducer] @layers = "spacy.mean_max_reducer.v1" hidden_size = 128 [components.spancat.model.scorer] @layers = "spacy.LinearLogistic.v1" nO = null nI = null [components.spancat.model.tok2vec] @architectures = "spacy.Tok2VecListener.v1" width = ${components.tok2vec.model.encode.width} upstream = "*" [components.spancat.suggester] @misc = "spacy.ngram_range_suggester.v1" min_size = 1 max_size = 25 [components.tok2vec] factory = "tok2vec" [components.tok2vec.model] @architectures = "spacy.Tok2Vec.v2" [components.tok2vec.model.embed] @architectures = "spacy.MultiHashEmbed.v2" width = ${components.tok2vec.model.encode.width} attrs = ["NORM","PREFIX","SUFFIX","SHAPE"] rows = [5000,1000,2500,2500] include_static_vectors = false [components.tok2vec.model.encode] @architectures = "spacy.MaxoutWindowEncoder.v2" width = 96 depth = 4 window_size = 1 maxout_pieces = 3 [corpora] [corpora.dev] @readers = "spacy.Corpus.v1" path = ${paths.dev} max_length = 0 gold_preproc = false limit = 0 augmenter = null [corpora.train] @readers = "spacy.Corpus.v1" path = ${paths.train} max_length = 0 gold_preproc = false limit = 0 augmenter = null [training] dev_corpus = "corpora.dev" train_corpus = "corpora.train" seed = ${system.seed} gpu_allocator = ${system.gpu_allocator} dropout = 0.1 accumulate_gradient = 1 patience = 1600 max_epochs = 0 max_steps = 20000 eval_frequency = 200 frozen_components = [] annotating_components = [] before_to_disk = null before_update = null [training.batcher] @batchers = "spacy.batch_by_words.v1" discard_oversize = false tolerance = 0.2 get_length = null [training.batcher.size] @schedules = "compounding.v1" start = 100 stop = 1000 compound = 1.001 t = 0.0 [training.logger] @loggers = "spacy.ConsoleLogger.v1" progress_bar = false [training.optimizer] @optimizers = "Adam.v1" beta1 = 0.9 beta2 = 0.999 L2_is_weight_decay = true L2 = 0.01 grad_clip = 1.0 use_averages = false eps = 0.00000001 learn_rate = 0.001 [training.score_weights] spans_sc_f = 1.0 spans_sc_p = 0.0 spans_sc_r = 0.0 [pretraining] [initialize] vectors = ${paths.vectors} init_tok2vec = ${paths.init_tok2vec} vocab_data = null lookups = null before_init = null after_init = null [initialize.components] [initialize.components.spancat] [initialize.components.spancat.labels] @readers = "spacy.read_labels.v1" path = "corpus/labels/spancat.json" require = false [initialize.tokenizer]