bartowski commited on
Commit
23c9b3a
1 Parent(s): bb7d0e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -6
README.md CHANGED
@@ -22,11 +22,10 @@ Original model: https://huggingface.co/google/gemma-2-9b-it
22
 
23
  All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
24
 
25
- Experimental quants are made with `--output-tensor-type f16 --token-embedding-type f16` per [ZeroWw](https://huggingface.co/ZeroWw)'s suggestion, please provide any feedback on quality differences you spot.
26
-
27
  ## What's new
28
 
29
  - June 21 2024: Contains latest tokenizer fixes, which addressed a few oddities from the original fix, should be closest to correct performance yet. Also has metadata for SWA and logit softcapping.
 
30
 
31
  ## Prompt format
32
 
@@ -45,27 +44,34 @@ Note that this model does not support a System prompt.
45
  | -------- | ---------- | --------- | ----------- |
46
  | [gemma-2-9b-it-Q8_0_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q8_1.gguf) | Q8_0_L | 10.68GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Extremely high quality, generally unneeded but max available quant. |
47
  | [gemma-2-9b-it-Q8_0.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q8_0.gguf) | Q8_0 | 9.82GB | Extremely high quality, generally unneeded but max available quant. |
48
- | [gemma-2-9b-it-Q6_K_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q6_K_L.gguf) | Q6_K_L | 8.67GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Very high quality, near perfect, *recommended*. |
49
  | [gemma-2-9b-it-Q6_K.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q6_K.gguf) | Q6_K | 7.58GB | Very high quality, near perfect, *recommended*. |
50
- | [gemma-2-9b-it-Q5_K_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q5_K_L.gguf) | Q5_K_L | 7.72GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. High quality, *recommended*. |
51
  | [gemma-2-9b-it-Q5_K_M.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q5_K_M.gguf) | Q5_K_M | 6.64GB | High quality, *recommended*. |
52
  | [gemma-2-9b-it-Q5_K_S.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q5_K_S.gguf) | Q5_K_S | 6.48GB | High quality, *recommended*. |
53
- | [gemma-2-9b-it-Q4_K_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q4_K_L.gguf) | Q4_K_L | 6.84GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Good quality, uses about 4.83 bits per weight, *recommended*. |
54
  | [gemma-2-9b-it-Q4_K_M.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q4_K_M.gguf) | Q4_K_M | 5.76GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
55
  | [gemma-2-9b-it-Q4_K_S.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q4_K_S.gguf) | Q4_K_S | 5.47GB | Slightly lower quality with more space savings, *recommended*. |
56
  | [gemma-2-9b-it-IQ4_XS.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ4_XS.gguf) | IQ4_XS | 5.18GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
57
- | [gemma-2-9b-it-Q3_K_XL.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q3_K_XL.gguf) | Q3_K_XL | 6.21GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Lower quality but usable, good for low RAM availability. |
58
  | [gemma-2-9b-it-Q3_K_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q3_K_L.gguf) | Q3_K_L | 5.13GB | Lower quality but usable, good for low RAM availability. |
59
  | [gemma-2-9b-it-Q3_K_M.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q3_K_M.gguf) | Q3_K_M | 4.76GB | Even lower quality. |
60
  | [gemma-2-9b-it-IQ3_M.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ3_M.gguf) | IQ3_M | 4.49GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
61
  | [gemma-2-9b-it-Q3_K_S.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q3_K_S.gguf) | Q3_K_S | 4.33GB | Low quality, not recommended. |
62
  | [gemma-2-9b-it-IQ3_XS.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ3_XS.gguf) | IQ3_XS | 4.14GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
63
  | [gemma-2-9b-it-IQ3_XXS.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ3_XXS.gguf) | IQ3_XXS | 3.79GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
 
64
  | [gemma-2-9b-it-Q2_K.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q2_K.gguf) | Q2_K | 3.80GB | Very low quality but surprisingly usable. |
65
  | [gemma-2-9b-it-IQ2_M.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ2_M.gguf) | IQ2_M | 3.43GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
66
  | [gemma-2-9b-it-IQ2_S.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ2_S.gguf) | IQ2_S | 3.21GB | Very low quality, uses SOTA techniques to be usable. |
67
  | [gemma-2-9b-it-IQ2_XS.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ2_XS.gguf) | IQ2_XS | 3.06GB | Very low quality, uses SOTA techniques to be usable. |
68
 
 
 
 
 
 
 
69
  ## Downloading using huggingface-cli
70
 
71
  First, make sure you have hugginface-cli installed:
 
22
 
23
  All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
24
 
 
 
25
  ## What's new
26
 
27
  - June 21 2024: Contains latest tokenizer fixes, which addressed a few oddities from the original fix, should be closest to correct performance yet. Also has metadata for SWA and logit softcapping.
28
+ - July 3 2024: Updated the experimental quants to newer method, Q8 for embed/output, yields higher quality at much lower size than f16 (left Q8_0_L since Q8_0 is already Q8 embed/output)
29
 
30
  ## Prompt format
31
 
 
44
  | -------- | ---------- | --------- | ----------- |
45
  | [gemma-2-9b-it-Q8_0_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q8_1.gguf) | Q8_0_L | 10.68GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Extremely high quality, generally unneeded but max available quant. |
46
  | [gemma-2-9b-it-Q8_0.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q8_0.gguf) | Q8_0 | 9.82GB | Extremely high quality, generally unneeded but max available quant. |
47
+ | [gemma-2-9b-it-Q6_K_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q6_K_L.gguf) | Q6_K_L | 7.81GB | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
48
  | [gemma-2-9b-it-Q6_K.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q6_K.gguf) | Q6_K | 7.58GB | Very high quality, near perfect, *recommended*. |
49
+ | [gemma-2-9b-it-Q5_K_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q5_K_L.gguf) | Q5_K_L | 6.87GB | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
50
  | [gemma-2-9b-it-Q5_K_M.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q5_K_M.gguf) | Q5_K_M | 6.64GB | High quality, *recommended*. |
51
  | [gemma-2-9b-it-Q5_K_S.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q5_K_S.gguf) | Q5_K_S | 6.48GB | High quality, *recommended*. |
52
+ | [gemma-2-9b-it-Q4_K_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q4_K_L.gguf) | Q4_K_L | 5.98GB | Uses Q8_0 for embed and output weights. Good quality, uses about 4.83 bits per weight, *recommended*. |
53
  | [gemma-2-9b-it-Q4_K_M.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q4_K_M.gguf) | Q4_K_M | 5.76GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
54
  | [gemma-2-9b-it-Q4_K_S.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q4_K_S.gguf) | Q4_K_S | 5.47GB | Slightly lower quality with more space savings, *recommended*. |
55
  | [gemma-2-9b-it-IQ4_XS.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ4_XS.gguf) | IQ4_XS | 5.18GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
56
+ | [gemma-2-9b-it-Q3_K_XL.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q3_K_XL.gguf) | Q3_K_XL | 5.35GB | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
57
  | [gemma-2-9b-it-Q3_K_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q3_K_L.gguf) | Q3_K_L | 5.13GB | Lower quality but usable, good for low RAM availability. |
58
  | [gemma-2-9b-it-Q3_K_M.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q3_K_M.gguf) | Q3_K_M | 4.76GB | Even lower quality. |
59
  | [gemma-2-9b-it-IQ3_M.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ3_M.gguf) | IQ3_M | 4.49GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
60
  | [gemma-2-9b-it-Q3_K_S.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q3_K_S.gguf) | Q3_K_S | 4.33GB | Low quality, not recommended. |
61
  | [gemma-2-9b-it-IQ3_XS.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ3_XS.gguf) | IQ3_XS | 4.14GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
62
  | [gemma-2-9b-it-IQ3_XXS.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ3_XXS.gguf) | IQ3_XXS | 3.79GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
63
+ | [gemma-2-9b-it-Q2_K_L.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q2_K_L.gguf) | Q2_K_L | 4.02GB | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
64
  | [gemma-2-9b-it-Q2_K.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-Q2_K.gguf) | Q2_K | 3.80GB | Very low quality but surprisingly usable. |
65
  | [gemma-2-9b-it-IQ2_M.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ2_M.gguf) | IQ2_M | 3.43GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
66
  | [gemma-2-9b-it-IQ2_S.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ2_S.gguf) | IQ2_S | 3.21GB | Very low quality, uses SOTA techniques to be usable. |
67
  | [gemma-2-9b-it-IQ2_XS.gguf](https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/blob/main/gemma-2-9b-it-IQ2_XS.gguf) | IQ2_XS | 3.06GB | Very low quality, uses SOTA techniques to be usable. |
68
 
69
+ ## Credits
70
+
71
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
72
+
73
+ Thank you ZeroWw for the inspiration to experiment with embed/output
74
+
75
  ## Downloading using huggingface-cli
76
 
77
  First, make sure you have hugginface-cli installed: