--- library_name: peft base_model: AI-Sweden-Models/gpt-sw3-1.3b datasets: - barbaroo/Faroese_BLARK_small - barbaroo/Books_Faroese language: - fo - sv - is - da - 'no' - en --- licence: [LICENCE](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b/blob/main/LICENSE) # Model Card for Model ID ## Model Details ### Model Description - **Developed by:** Barbara Scalvini, Language Technology Center, University of the Faroe Islands - **Model type:** This is a LoRA adapter for GPT-Sw3 with continued pre-training on Faroese data (BLARK corpus, private Faroese books repository). Training was performed for 10 epochs (more checkpoints to come). - **Language(s) (NLP):** Swedish, English, Norwegian, Danish, Icelandic, Faroese - **from model [optional]:** AI-Sweden-Models/gpt-sw3-1.3b ## How to Get Started with the Model Use the code below to get started with the model. ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer # Load the Peft configuration and model config = PeftConfig.from_pretrained("barbaroo/gptsw3_lora_fo_1.3b") model = AutoModelForCausalLM.from_pretrained("AI-Sweden-Models/gpt-sw3-1.3b") model = PeftModel.from_pretrained(model, "barbaroo/gptsw3_lora_fo_1.3b") # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("AI-Sweden-Models/gpt-sw3-1.3b") # Define the prompt prompt = "fortel mær eina søgu:" # Tokenize the input inputs = tokenizer(prompt, return_tensors="pt") # Generate text output = model.generate(**inputs, max_length=100,do_sample=True, temperature=0.7) # Decode the generated text generated_text = tokenizer.decode(output[0], skip_special_tokens=True) print(generated_text) ``` ## Uses Language generation tasks, such as translation, summarization, conversational AI, etc. ## Training Details ### Training Data We trained our model on a corpus derived from the Basic Language Resource Kit for Faroese. For detailed information about the dataset, please see the [BLARK_small](https://huggingface.co/datasets/barbaroo/Faroese_BLARK_small) Extra training data was taken from a private corpus of Faroese books ( [Faroese Books](https://huggingface.co/datasets/barbaroo/Books_Faroese)) ### Testing Data, Factors & Metrics #### Testing Data Validation/testing was performed on the test split of the Faroese books corpus ( [Faroese Books](https://huggingface.co/datasets/barbaroo/Books_Faroese)) ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.2.dev0