PEFT
barbaroo commited on
Commit
ab66be7
1 Parent(s): 7239ca6

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -116
README.md DELETED
@@ -1,116 +0,0 @@
1
- ---
2
- library_name: peft
3
- base_model: AI-Sweden-Models/gpt-sw3-1.3b
4
- datasets:
5
- - barbaroo/Faroese_BLARK_small
6
- - barbaroo/Books_Faroese
7
- language:
8
- - fo
9
- - sv
10
- - is
11
- - da
12
- - 'no'
13
- - en
14
- ---
15
- licence: [LICENCE](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b/blob/main/LICENSE)
16
-
17
- # Model Card for Model ID
18
-
19
-
20
- ## Model Details
21
-
22
- ### Model Description
23
-
24
- <!-- Provide a longer summary of what this model is. -->
25
-
26
-
27
-
28
- - **Developed by:** Barbara Scalvini, Language Technology Center, University of the Faroe Islands
29
-
30
- - **Model type:** This is a LoRA adapter for GPT-Sw3 with continued pre-training on Faroese data (BLARK corpus, private Faroese books repository). Training was performed for 10 epochs (more checkpoints to come).
31
- - **Language(s) (NLP):** Swedish, English, Norwegian, Danish, Icelandic, Faroese
32
- - **from model [optional]:** AI-Sweden-Models/gpt-sw3-1.3b
33
-
34
-
35
- ## How to Get Started with the Model
36
-
37
- Use the code below to get started with the model.
38
-
39
- ```python
40
- from peft import PeftModel, PeftConfig
41
- from transformers import AutoModelForCausalLM, AutoTokenizer
42
-
43
- # Load the Peft configuration and model
44
- config = PeftConfig.from_pretrained("barbaroo/gptsw3_lora_fo_1.3b")
45
- model = AutoModelForCausalLM.from_pretrained("AI-Sweden-Models/gpt-sw3-1.3b")
46
- model = PeftModel.from_pretrained(model, "barbaroo/gptsw3_lora_fo_1.3b")
47
-
48
- # Load the tokenizer
49
- tokenizer = AutoTokenizer.from_pretrained("AI-Sweden-Models/gpt-sw3-1.3b")
50
-
51
- # Define the prompt
52
- prompt = "fortel mær eina søgu:"
53
-
54
- # Tokenize the input
55
- inputs = tokenizer(prompt, return_tensors="pt")
56
-
57
- # Generate text
58
- output = model.generate(**inputs, max_length=100,do_sample=True, temperature=0.7)
59
-
60
- # Decode the generated text
61
- generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
62
-
63
- print(generated_text)
64
-
65
- ```
66
-
67
- ## Uses
68
-
69
- Language generation tasks, such as translation, summarization, conversational AI, etc.
70
-
71
-
72
-
73
- ## Training Details
74
-
75
- ### Training Data
76
-
77
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --
78
- [More Information Needed]
79
-
80
-
81
-
82
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
83
-
84
- We trained our model on a corpus derived from the Basic Language Resource Kit for Faroese. For detailed information about the dataset, please see the [BLARK_small](https://huggingface.co/datasets/barbaroo/Faroese_BLARK_small)
85
- Extra training data was taken from a private corpus of Faroese books ( [Faroese Books](https://huggingface.co/datasets/barbaroo/Books_Faroese))
86
-
87
-
88
-
89
- ### Testing Data, Factors & Metrics
90
-
91
- #### Testing Data
92
-
93
- <!-- This should link to a Data Card if possible. -->
94
-
95
- Validation/testing was performed on the test split of the Faroese books corpus ( [Faroese Books](https://huggingface.co/datasets/barbaroo/Books_Faroese))
96
-
97
-
98
-
99
- ## Training procedure
100
-
101
-
102
- The following `bitsandbytes` quantization config was used during training:
103
- - quant_method: bitsandbytes
104
- - load_in_8bit: True
105
- - load_in_4bit: False
106
- - llm_int8_threshold: 6.0
107
- - llm_int8_skip_modules: None
108
- - llm_int8_enable_fp32_cpu_offload: False
109
- - llm_int8_has_fp16_weight: False
110
- - bnb_4bit_quant_type: fp4
111
- - bnb_4bit_use_double_quant: False
112
- - bnb_4bit_compute_dtype: float32
113
-
114
- ### Framework versions
115
-
116
- - PEFT 0.6.2.dev0