File size: 61,736 Bytes
88409ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee8acbe
88409ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-large-en
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: What is the primary purpose of a swap fund?
  sentences:
  - What is the primary function of a Federal Savings and Loan Association?
  - Is the Harmonized System a binding system for origin, valuation, or duty rates?
  - How many shares of ABC Inc. did Company A purchase, and at what price per share?
- source_sentence: Calculate the information ratio for Portfolio B.
  sentences:
  - What is the risk-reward ratio for Stock B?
  - Are private companies and individuals considered foreign official institutions?
  - What is the role of the Federal Reserve System in relation to U.S. currency?
- source_sentence: What is the official language of Angola?
  sentences:
  - What are the official languages of Somalia, and which language is most widely
    spoken?
  - What debts and obligations did Michael Johnson, the executor, have to settle?
  - Do horizon returns guarantee future investment performance?
- source_sentence: What is the capital of the United States?
  sentences:
  - What is the capital and largest city of Mauritius?
  - How does Isabelle determine the appropriate bonds to purchase for each year?
  - What strategies might ABC Company employ to mitigate its economic exposure?
- source_sentence: How many companies are listed on the NYSE?
  sentences:
  - What are the trading hours of the New York Stock Exchange?
  - Why do Maple Leaf coins often trade at a premium over their metal content value?
  - How do interest rate fluctuations affect the prepayment risk of companion bonds?
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-large-en
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: Original Embedding model Metric
      type: Original_Embedding_model_Metric
    metrics:
    - type: cosine_accuracy
      value: 0.5005796728069045
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.4977457168620379
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.5014813860620894
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.5003220404482803
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.5014813860620894
      name: Max Accuracy
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: Finance model Embedding Metric
      type: Finance_model_Embedding_Metric
    metrics:
    - type: cosine_accuracy
      value: 0.9872471982480999
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.01120700760015458
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.9868607497101636
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.9872471982480999
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.9872471982480999
      name: Max Accuracy
---

# SentenceTransformer based on BAAI/bge-large-en

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) <!-- at revision abe7d9d814b775ca171121fb03f394dc42974275 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [baconnier/finance2_dataset_private](https://huggingface.co/datasets/baconnier/finance2_dataset_private)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("baconnier/Finance_embedding_large_en-V0.1")
# Run inference
sentences = [
    'How many companies are listed on the NYSE?',
    'What are the trading hours of the New York Stock Exchange?',
    'Why do Maple Leaf coins often trade at a premium over their metal content value?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet
* Dataset: `Original_Embedding_model_Metric`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy    | 0.5006     |
| dot_accuracy       | 0.4977     |
| manhattan_accuracy | 0.5015     |
| euclidean_accuracy | 0.5003     |
| **max_accuracy**   | **0.5015** |

#### Triplet
* Dataset: `Finance_model_Embedding_Metric`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy    | 0.9872     |
| dot_accuracy       | 0.0112     |
| manhattan_accuracy | 0.9869     |
| euclidean_accuracy | 0.9872     |
| **max_accuracy**   | **0.9872** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### baconnier/finance2_dataset_private

* Dataset: [baconnier/finance2_dataset_private](https://huggingface.co/datasets/baconnier/finance2_dataset_private) at [f384fe0](https://huggingface.co/datasets/baconnier/finance2_dataset_private/tree/f384fe051309cd3bec396a0ed587e298e6b30e0f)
* Size: 36,223 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                             | negative                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               | string                                                                              |
  | details | <ul><li>min: 9 tokens</li><li>mean: 25.02 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 152.04 tokens</li><li>max: 460 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 54.96 tokens</li><li>max: 225 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | negative                                                                                                                                                                                                                                                                                                                                                                   |
  |:----------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>When was the Libyan Dinar (LYD) introduced, and what was the exchange rate with the previous currency?</code>   | <code>According to the context, the Libyan Dinar (LYD) was introduced in 1971, replacing the Libyan pound at a rate of 1 dinar = 1 pound.<br>The Libyan Dinar (LYD) was introduced in 1971, replacing the Libyan pound at a rate of 1 dinar to 1 pound.</code>                                                                                                                                                                                                                                                                               | <code>The Libyan Dinar was introduced sometime in the 20th century.<br>The Libyan Dinar was introduced in the 20th century.</code>                                                                                                                                                                                                                                         |
  | <code>How many fillér would you have if you exchanged 10 USD for Hungarian Forints at the given exchange rate?</code> | <code>First, calculate the HUF equivalent of 10 USD using the exchange rate: 1 USD ≈ 339 HUF, so 10 USD ≈ 10 × 339 = 3,390 HUF. The context also states that 1 HUF = 100 fillér, so to find the number of fillér, multiply the HUF amount by 100: 3,390 HUF × 100 fillér/HUF = 339,000 fillér.<br>At the given exchange rate, exchanging 10 USD would give you approximately 339,000 fillér.</code>                                                                                                                                          | <code>The context provides the exchange rate between USD and HUF, but it doesn't mention how many HUF equal one fillér. Without knowing the conversion rate between HUF and fillér, it's impossible to calculate the number of fillér you'd get for 10 USD.<br>There is not enough information provided to determine the number of fillér you would get for 10 USD.</code> |
  | <code>What is the total value of John's vintage car collection and his wife's jewelry collection combined?</code>     | <code>The passage states that John's vintage car collection is valued at $500,000 and his wife's jewelry collection is worth $200,000.<br>To find the total value, we add these two amounts:<br>Vintage car collection: $500,000<br>Jewelry collection: $200,000<br>$500,000 + $200,000 = $700,000<br>Therefore, the total value of John's vintage car collection and his wife's jewelry collection combined is $700,000.<br>The total value of John's vintage car collection and his wife's jewelry collection combined is $700,000.</code> | <code>The passage mentions that John has a vintage car collection and his wife has a jewelry collection. However, the values of these collections are not provided.<br>The total value of John's vintage car collection and his wife's jewelry collection cannot be determined from the given information.</code>                                                          |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### baconnier/finance2_dataset_private

* Dataset: [baconnier/finance2_dataset_private](https://huggingface.co/datasets/baconnier/finance2_dataset_private) at [f384fe0](https://huggingface.co/datasets/baconnier/finance2_dataset_private/tree/f384fe051309cd3bec396a0ed587e298e6b30e0f)
* Size: 7,762 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                             | negative                                                                            |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               | string                                                                              |
  | details | <ul><li>min: 9 tokens</li><li>mean: 25.52 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 153.66 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 53.73 tokens</li><li>max: 181 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                   | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | negative                                                                                                                                                                                                          |
  |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What factors have contributed to Acme Inc.'s stock becoming a wallflower?</code>                                                                                   | <code>Several factors have contributed to Acme Inc.'s stock becoming a wallflower:<br><br>1. Declining sales: Acme Inc. has experienced a decline in sales, which has negatively impacted its financial performance.<br><br>2. Decreasing profit margins: Along with declining sales, Acme Inc.'s profit margins have also decreased, further affecting its bottom line.<br><br>3. Falling stock price: As a result of the declining sales and profit margins, Acme Inc.'s stock price has dropped significantly.<br><br>4. Low P/E ratio: The company's P/E ratio has decreased to 8, which is much lower than the industry average of 15. This low P/E ratio indicates that investors are not willing to pay a premium for Acme Inc.'s stock due to its poor financial performance.<br><br>These factors have collectively led to Acme Inc.'s stock falling out of favor with investors, making it a wallflower stock.<br>Acme Inc.'s stock has become a wallflower due to a combination of factors, including declining sales, decreasing profit margins, a falling stock price, and a low P/E ratio compared to the industry average, which have led to investors losing interest in the company's stock.</code> | <code>Acme Inc.'s stock has become a wallflower because its P/E ratio is lower than the industry average.<br>Acme Inc.'s low P/E ratio has caused its stock to become a wallflower.</code>                        |
  | <code>How does the Accumulated Benefit Obligation (ABO) differ from the Projected Benefit Obligation (PBO) in terms of assumptions about future salary increases?</code> | <code>The Accumulated Benefit Obligation (ABO) assumes that the pension plan will terminate immediately and does not take into account any future salary increases. In contrast, the Projected Benefit Obligation (PBO) includes assumptions about future salary increases when calculating the present value of an employee's pension benefits.<br>The ABO does not consider future salary increases, assuming immediate plan termination, while the PBO incorporates assumptions about future salary increases in its calculations.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <code>The ABO and PBO are the same things and both include assumptions about future salary increases for employees.<br>There is no difference between ABO and PBO in terms of salary increase assumptions.</code> |
  | <code>What is the annual interest rate of the annuity, and how is it compounded?</code>                                                                                  | <code>According to the context, the annuity has an annual interest rate of 3%. This interest is compounded monthly, meaning the 3% annual rate is divided by 12 (the number of months in a year) and applied to the account balance each month. This results in a slightly higher effective annual rate due to the compound growth.<br>The annuity has an annual interest rate of 3%, which is compounded monthly, resulting in compound growth of the account balance.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <code>The annuity has an interest rate that is compounded.<br>The annuity's interest rate is compounded.</code>                                                                                                   |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | loss   | Finance_model_Embedding_Metric_max_accuracy | Original_Embedding_model_Metric_max_accuracy |
|:------:|:----:|:-------------:|:------:|:-------------------------------------------:|:--------------------------------------------:|
| 0      | 0    | -             | -      | -                                           | 0.5015                                       |
| 0.0044 | 10   | 1.0947        | -      | -                                           | -                                            |
| 0.0088 | 20   | 0.9611        | -      | -                                           | -                                            |
| 0.0133 | 30   | 0.6565        | -      | -                                           | -                                            |
| 0.0177 | 40   | 0.4234        | -      | -                                           | -                                            |
| 0.0221 | 50   | 0.1672        | -      | -                                           | -                                            |
| 0.0265 | 60   | 0.1305        | -      | -                                           | -                                            |
| 0.0309 | 70   | 0.1381        | -      | -                                           | -                                            |
| 0.0353 | 80   | 0.0846        | -      | -                                           | -                                            |
| 0.0398 | 90   | 0.1078        | -      | -                                           | -                                            |
| 0.0442 | 100  | 0.0867        | -      | -                                           | -                                            |
| 0.0486 | 110  | 0.0935        | -      | -                                           | -                                            |
| 0.0530 | 120  | 0.1197        | -      | -                                           | -                                            |
| 0.0574 | 130  | 0.0841        | -      | -                                           | -                                            |
| 0.0618 | 140  | 0.0792        | -      | -                                           | -                                            |
| 0.0663 | 150  | 0.0811        | -      | -                                           | -                                            |
| 0.0707 | 160  | 0.1032        | -      | -                                           | -                                            |
| 0.0751 | 170  | 0.1051        | -      | -                                           | -                                            |
| 0.0795 | 180  | 0.1091        | -      | -                                           | -                                            |
| 0.0839 | 190  | 0.0778        | -      | -                                           | -                                            |
| 0.0883 | 200  | 0.1006        | -      | -                                           | -                                            |
| 0.0928 | 210  | 0.0738        | -      | -                                           | -                                            |
| 0.0972 | 220  | 0.1105        | -      | -                                           | -                                            |
| 0.1003 | 227  | -             | 0.1181 | -                                           | -                                            |
| 0.1016 | 230  | 0.0697        | -      | -                                           | -                                            |
| 0.1060 | 240  | 0.064         | -      | -                                           | -                                            |
| 0.1104 | 250  | 0.1204        | -      | -                                           | -                                            |
| 0.1148 | 260  | 0.0664        | -      | -                                           | -                                            |
| 0.1193 | 270  | 0.0776        | -      | -                                           | -                                            |
| 0.1237 | 280  | 0.0574        | -      | -                                           | -                                            |
| 0.1281 | 290  | 0.054         | -      | -                                           | -                                            |
| 0.1325 | 300  | 0.0681        | -      | -                                           | -                                            |
| 0.1369 | 310  | 0.1315        | -      | -                                           | -                                            |
| 0.1413 | 320  | 0.1005        | -      | -                                           | -                                            |
| 0.1458 | 330  | 0.0613        | -      | -                                           | -                                            |
| 0.1502 | 340  | 0.0476        | -      | -                                           | -                                            |
| 0.1546 | 350  | 0.0735        | -      | -                                           | -                                            |
| 0.1590 | 360  | 0.106         | -      | -                                           | -                                            |
| 0.1634 | 370  | 0.1082        | -      | -                                           | -                                            |
| 0.1678 | 380  | 0.0437        | -      | -                                           | -                                            |
| 0.1723 | 390  | 0.0782        | -      | -                                           | -                                            |
| 0.1767 | 400  | 0.0858        | -      | -                                           | -                                            |
| 0.1811 | 410  | 0.0563        | -      | -                                           | -                                            |
| 0.1855 | 420  | 0.0798        | -      | -                                           | -                                            |
| 0.1899 | 430  | 0.0674        | -      | -                                           | -                                            |
| 0.1943 | 440  | 0.0887        | -      | -                                           | -                                            |
| 0.1988 | 450  | 0.1032        | -      | -                                           | -                                            |
| 0.2005 | 454  | -             | 0.0720 | -                                           | -                                            |
| 0.2032 | 460  | 0.0591        | -      | -                                           | -                                            |
| 0.2076 | 470  | 0.0581        | -      | -                                           | -                                            |
| 0.2120 | 480  | 0.1544        | -      | -                                           | -                                            |
| 0.2164 | 490  | 0.0169        | -      | -                                           | -                                            |
| 0.2208 | 500  | 0.0593        | -      | -                                           | -                                            |
| 0.2253 | 510  | 0.0971        | -      | -                                           | -                                            |
| 0.2297 | 520  | 0.0567        | -      | -                                           | -                                            |
| 0.2341 | 530  | 0.0501        | -      | -                                           | -                                            |
| 0.2385 | 540  | 0.0452        | -      | -                                           | -                                            |
| 0.2429 | 550  | 0.0574        | -      | -                                           | -                                            |
| 0.2473 | 560  | 0.0616        | -      | -                                           | -                                            |
| 0.2518 | 570  | 0.1414        | -      | -                                           | -                                            |
| 0.2562 | 580  | 0.0776        | -      | -                                           | -                                            |
| 0.2606 | 590  | 0.0828        | -      | -                                           | -                                            |
| 0.2650 | 600  | 0.1046        | -      | -                                           | -                                            |
| 0.2694 | 610  | 0.1248        | -      | -                                           | -                                            |
| 0.2739 | 620  | 0.0547        | -      | -                                           | -                                            |
| 0.2783 | 630  | 0.0424        | -      | -                                           | -                                            |
| 0.2827 | 640  | 0.1401        | -      | -                                           | -                                            |
| 0.2871 | 650  | 0.0746        | -      | -                                           | -                                            |
| 0.2915 | 660  | 0.0279        | -      | -                                           | -                                            |
| 0.2959 | 670  | 0.1115        | -      | -                                           | -                                            |
| 0.3004 | 680  | 0.0846        | -      | -                                           | -                                            |
| 0.3008 | 681  | -             | 0.0655 | -                                           | -                                            |
| 0.3048 | 690  | 0.063         | -      | -                                           | -                                            |
| 0.3092 | 700  | 0.0949        | -      | -                                           | -                                            |
| 0.3136 | 710  | 0.0482        | -      | -                                           | -                                            |
| 0.3180 | 720  | 0.063         | -      | -                                           | -                                            |
| 0.3224 | 730  | 0.0524        | -      | -                                           | -                                            |
| 0.3269 | 740  | 0.0752        | -      | -                                           | -                                            |
| 0.3313 | 750  | 0.0964        | -      | -                                           | -                                            |
| 0.3357 | 760  | 0.0378        | -      | -                                           | -                                            |
| 0.3401 | 770  | 0.0611        | -      | -                                           | -                                            |
| 0.3445 | 780  | 0.0764        | -      | -                                           | -                                            |
| 0.3489 | 790  | 0.0391        | -      | -                                           | -                                            |
| 0.3534 | 800  | 0.0549        | -      | -                                           | -                                            |
| 0.3578 | 810  | 0.0717        | -      | -                                           | -                                            |
| 0.3622 | 820  | 0.0688        | -      | -                                           | -                                            |
| 0.3666 | 830  | 0.0891        | -      | -                                           | -                                            |
| 0.3710 | 840  | 0.034         | -      | -                                           | -                                            |
| 0.3754 | 850  | 0.0773        | -      | -                                           | -                                            |
| 0.3799 | 860  | 0.0377        | -      | -                                           | -                                            |
| 0.3843 | 870  | 0.0629        | -      | -                                           | -                                            |
| 0.3887 | 880  | 0.0544        | -      | -                                           | -                                            |
| 0.3931 | 890  | 0.0384        | -      | -                                           | -                                            |
| 0.3975 | 900  | 0.0489        | -      | -                                           | -                                            |
| 0.4011 | 908  | -             | 0.0708 | -                                           | -                                            |
| 0.4019 | 910  | 0.0757        | -      | -                                           | -                                            |
| 0.4064 | 920  | 0.0904        | -      | -                                           | -                                            |
| 0.4108 | 930  | 0.0569        | -      | -                                           | -                                            |
| 0.4152 | 940  | 0.0875        | -      | -                                           | -                                            |
| 0.4196 | 950  | 0.0452        | -      | -                                           | -                                            |
| 0.4240 | 960  | 0.0791        | -      | -                                           | -                                            |
| 0.4284 | 970  | 0.0721        | -      | -                                           | -                                            |
| 0.4329 | 980  | 0.0354        | -      | -                                           | -                                            |
| 0.4373 | 990  | 0.0171        | -      | -                                           | -                                            |
| 0.4417 | 1000 | 0.0726        | -      | -                                           | -                                            |
| 0.4461 | 1010 | 0.0546        | -      | -                                           | -                                            |
| 0.4505 | 1020 | 0.0352        | -      | -                                           | -                                            |
| 0.4549 | 1030 | 0.0424        | -      | -                                           | -                                            |
| 0.4594 | 1040 | 0.063         | -      | -                                           | -                                            |
| 0.4638 | 1050 | 0.0928        | -      | -                                           | -                                            |
| 0.4682 | 1060 | 0.0648        | -      | -                                           | -                                            |
| 0.4726 | 1070 | 0.0591        | -      | -                                           | -                                            |
| 0.4770 | 1080 | 0.0506        | -      | -                                           | -                                            |
| 0.4814 | 1090 | 0.0991        | -      | -                                           | -                                            |
| 0.4859 | 1100 | 0.0268        | -      | -                                           | -                                            |
| 0.4903 | 1110 | 0.039         | -      | -                                           | -                                            |
| 0.4947 | 1120 | 0.0913        | -      | -                                           | -                                            |
| 0.4991 | 1130 | 0.0413        | -      | -                                           | -                                            |
| 0.5013 | 1135 | -             | 0.0542 | -                                           | -                                            |
| 0.5035 | 1140 | 0.0706        | -      | -                                           | -                                            |
| 0.5080 | 1150 | 0.0476        | -      | -                                           | -                                            |
| 0.5124 | 1160 | 0.0567        | -      | -                                           | -                                            |
| 0.5168 | 1170 | 0.0425        | -      | -                                           | -                                            |
| 0.5212 | 1180 | 0.0378        | -      | -                                           | -                                            |
| 0.5256 | 1190 | 0.0531        | -      | -                                           | -                                            |
| 0.5300 | 1200 | 0.0839        | -      | -                                           | -                                            |
| 0.5345 | 1210 | 0.0378        | -      | -                                           | -                                            |
| 0.5389 | 1220 | 0.0309        | -      | -                                           | -                                            |
| 0.5433 | 1230 | 0.0213        | -      | -                                           | -                                            |
| 0.5477 | 1240 | 0.0769        | -      | -                                           | -                                            |
| 0.5521 | 1250 | 0.0543        | -      | -                                           | -                                            |
| 0.5565 | 1260 | 0.0587        | -      | -                                           | -                                            |
| 0.5610 | 1270 | 0.0658        | -      | -                                           | -                                            |
| 0.5654 | 1280 | 0.0621        | -      | -                                           | -                                            |
| 0.5698 | 1290 | 0.0558        | -      | -                                           | -                                            |
| 0.5742 | 1300 | 0.0521        | -      | -                                           | -                                            |
| 0.5786 | 1310 | 0.0481        | -      | -                                           | -                                            |
| 0.5830 | 1320 | 0.0373        | -      | -                                           | -                                            |
| 0.5875 | 1330 | 0.0652        | -      | -                                           | -                                            |
| 0.5919 | 1340 | 0.0685        | -      | -                                           | -                                            |
| 0.5963 | 1350 | 0.077         | -      | -                                           | -                                            |
| 0.6007 | 1360 | 0.0521        | -      | -                                           | -                                            |
| 0.6016 | 1362 | -             | 0.0516 | -                                           | -                                            |
| 0.6051 | 1370 | 0.0378        | -      | -                                           | -                                            |
| 0.6095 | 1380 | 0.0442        | -      | -                                           | -                                            |
| 0.6140 | 1390 | 0.0435        | -      | -                                           | -                                            |
| 0.6184 | 1400 | 0.0288        | -      | -                                           | -                                            |
| 0.6228 | 1410 | 0.0565        | -      | -                                           | -                                            |
| 0.6272 | 1420 | 0.0449        | -      | -                                           | -                                            |
| 0.6316 | 1430 | 0.0226        | -      | -                                           | -                                            |
| 0.6360 | 1440 | 0.0395        | -      | -                                           | -                                            |
| 0.6405 | 1450 | 0.059         | -      | -                                           | -                                            |
| 0.6449 | 1460 | 0.1588        | -      | -                                           | -                                            |
| 0.6493 | 1470 | 0.0562        | -      | -                                           | -                                            |
| 0.6537 | 1480 | 0.117         | -      | -                                           | -                                            |
| 0.6581 | 1490 | 0.107         | -      | -                                           | -                                            |
| 0.6625 | 1500 | 0.0972        | -      | -                                           | -                                            |
| 0.6670 | 1510 | 0.0684        | -      | -                                           | -                                            |
| 0.6714 | 1520 | 0.0743        | -      | -                                           | -                                            |
| 0.6758 | 1530 | 0.0784        | -      | -                                           | -                                            |
| 0.6802 | 1540 | 0.0892        | -      | -                                           | -                                            |
| 0.6846 | 1550 | 0.0676        | -      | -                                           | -                                            |
| 0.6890 | 1560 | 0.0312        | -      | -                                           | -                                            |
| 0.6935 | 1570 | 0.0834        | -      | -                                           | -                                            |
| 0.6979 | 1580 | 0.0241        | -      | -                                           | -                                            |
| 0.7019 | 1589 | -             | 0.0495 | -                                           | -                                            |
| 0.7023 | 1590 | 0.0391        | -      | -                                           | -                                            |
| 0.7067 | 1600 | 0.043         | -      | -                                           | -                                            |
| 0.7111 | 1610 | 0.045         | -      | -                                           | -                                            |
| 0.7155 | 1620 | 0.0216        | -      | -                                           | -                                            |
| 0.7200 | 1630 | 0.0715        | -      | -                                           | -                                            |
| 0.7244 | 1640 | 0.0173        | -      | -                                           | -                                            |
| 0.7288 | 1650 | 0.0249        | -      | -                                           | -                                            |
| 0.7332 | 1660 | 0.0187        | -      | -                                           | -                                            |
| 0.7376 | 1670 | 0.0647        | -      | -                                           | -                                            |
| 0.7420 | 1680 | 0.0199        | -      | -                                           | -                                            |
| 0.7465 | 1690 | 0.0333        | -      | -                                           | -                                            |
| 0.7509 | 1700 | 0.0718        | -      | -                                           | -                                            |
| 0.7553 | 1710 | 0.0373        | -      | -                                           | -                                            |
| 0.7597 | 1720 | 0.0744        | -      | -                                           | -                                            |
| 0.7641 | 1730 | 0.0185        | -      | -                                           | -                                            |
| 0.7686 | 1740 | 0.0647        | -      | -                                           | -                                            |
| 0.7730 | 1750 | 0.0289        | -      | -                                           | -                                            |
| 0.7774 | 1760 | 0.034         | -      | -                                           | -                                            |
| 0.7818 | 1770 | 0.0184        | -      | -                                           | -                                            |
| 0.7862 | 1780 | 0.0537        | -      | -                                           | -                                            |
| 0.7906 | 1790 | 0.0724        | -      | -                                           | -                                            |
| 0.7951 | 1800 | 0.0511        | -      | -                                           | -                                            |
| 0.7995 | 1810 | 0.0165        | -      | -                                           | -                                            |
| 0.8021 | 1816 | -             | 0.0488 | -                                           | -                                            |
| 0.8039 | 1820 | 0.0364        | -      | -                                           | -                                            |
| 0.8083 | 1830 | 0.1126        | -      | -                                           | -                                            |
| 0.8127 | 1840 | 0.0148        | -      | -                                           | -                                            |
| 0.8171 | 1850 | 0.0722        | -      | -                                           | -                                            |
| 0.8216 | 1860 | 0.0586        | -      | -                                           | -                                            |
| 0.8260 | 1870 | 0.0496        | -      | -                                           | -                                            |
| 0.8304 | 1880 | 0.026         | -      | -                                           | -                                            |
| 0.8348 | 1890 | 0.0417        | -      | -                                           | -                                            |
| 0.8392 | 1900 | 0.0586        | -      | -                                           | -                                            |
| 0.8436 | 1910 | 0.0255        | -      | -                                           | -                                            |
| 0.8481 | 1920 | 0.0329        | -      | -                                           | -                                            |
| 0.8525 | 1930 | 0.015         | -      | -                                           | -                                            |
| 0.8569 | 1940 | 0.0657        | -      | -                                           | -                                            |
| 0.8613 | 1950 | 0.0465        | -      | -                                           | -                                            |
| 0.8657 | 1960 | 0.0107        | -      | -                                           | -                                            |
| 0.8701 | 1970 | 0.0401        | -      | -                                           | -                                            |
| 0.8746 | 1980 | 0.022         | -      | -                                           | -                                            |
| 0.8790 | 1990 | 0.061         | -      | -                                           | -                                            |
| 0.8834 | 2000 | 0.0474        | -      | -                                           | -                                            |
| 0.8878 | 2010 | 0.0358        | -      | -                                           | -                                            |
| 0.8922 | 2020 | 0.0599        | -      | -                                           | -                                            |
| 0.8966 | 2030 | 0.0522        | -      | -                                           | -                                            |
| 0.9011 | 2040 | 0.0312        | -      | -                                           | -                                            |
| 0.9024 | 2043 | -             | 0.0421 | -                                           | -                                            |
| 0.9055 | 2050 | 0.024         | -      | -                                           | -                                            |
| 0.9099 | 2060 | 0.1085        | -      | -                                           | -                                            |
| 0.9143 | 2070 | 0.0144        | -      | -                                           | -                                            |
| 0.9187 | 2080 | 0.038         | -      | -                                           | -                                            |
| 0.9231 | 2090 | 0.0948        | -      | -                                           | -                                            |
| 0.9276 | 2100 | 0.0317        | -      | -                                           | -                                            |
| 0.9320 | 2110 | 0.0674        | -      | -                                           | -                                            |
| 0.9364 | 2120 | 0.081         | -      | -                                           | -                                            |
| 0.9408 | 2130 | 0.036         | -      | -                                           | -                                            |
| 0.9452 | 2140 | 0.0649        | -      | -                                           | -                                            |
| 0.9496 | 2150 | 0.0235        | -      | -                                           | -                                            |
| 0.9541 | 2160 | 0.0291        | -      | -                                           | -                                            |
| 0.9585 | 2170 | 0.0293        | -      | -                                           | -                                            |
| 0.9629 | 2180 | 0.0703        | -      | -                                           | -                                            |
| 0.9673 | 2190 | 0.0148        | -      | -                                           | -                                            |
| 0.9717 | 2200 | 0.0397        | -      | -                                           | -                                            |
| 0.9761 | 2210 | 0.0552        | -      | -                                           | -                                            |
| 0.9806 | 2220 | 0.0097        | -      | -                                           | -                                            |
| 0.9850 | 2230 | 0.0723        | -      | -                                           | -                                            |
| 0.9894 | 2240 | 0.0379        | -      | -                                           | -                                            |
| 0.9938 | 2250 | 0.0289        | -      | -                                           | -                                            |
| 0.9982 | 2260 | 0.0267        | -      | -                                           | -                                            |
| 1.0    | 2264 | -             | -      | 0.9872                                      | -                                            |

</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->