--- license: llama3 library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-70B model-index: - name: output/llama3-70b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3-70B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: awilliamson/qbank_conversations type: chat_template chat_template: llama3 field_messages: conversations message_field_role: from message_field_content: value roles: system: - system user: - user assistant: - assistant chat_template: llama3 adapter: qlora lora_r: 32 lora_alpha: 16 lora_modules_to_save: [embed_tokens, lm_head] lora_dropout: 0.05 lora_target_linear: true dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./output/llama3-70b sequence_len: 4096 sample_packing: false pad_to_sequence_len: true wandb_project: llama-70b wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 3 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 15 evals_per_epoch: 5 eval_table_size: saves_per_epoch: 1 save_total_limit: 10 save_steps: debug: weight_decay: 0.00 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: "<|end_of_text|>" ```

# output/llama3-70b This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B](https://huggingface.co/meta-llama/Meta-Llama-3-70B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3783 | 0.0388 | 1 | 2.8294 | | 1.2438 | 0.1942 | 5 | 1.4718 | | 1.1973 | 0.3883 | 10 | 1.4697 | | 1.0995 | 0.5825 | 15 | 1.4572 | | 1.181 | 0.7767 | 20 | 1.4470 | | 1.1298 | 0.9709 | 25 | 1.4350 | | 0.9058 | 1.1650 | 30 | 1.4232 | | 0.8712 | 1.3592 | 35 | 1.4126 | | 0.8735 | 1.5534 | 40 | 1.4051 | | 0.8975 | 1.7476 | 45 | 1.4024 | | 0.929 | 1.9417 | 50 | 1.3951 | | 0.9181 | 2.1359 | 55 | 1.3923 | | 0.9171 | 2.3301 | 60 | 1.3917 | | 0.9111 | 2.5243 | 65 | 1.3907 | | 0.9676 | 2.7184 | 70 | 1.3904 | | 0.8497 | 2.9126 | 75 | 1.3901 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1