Uploaded all files
Browse files- Dockerfile +18 -0
- best_model.pkl +3 -0
- predict.py +46 -0
- requirements.txt +6 -0
Dockerfile
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# FROM centos:latest
|
2 |
+
# Use the official Python base image with version 3.9
|
3 |
+
FROM python:3.9
|
4 |
+
|
5 |
+
WORKDIR /poem_classifier
|
6 |
+
|
7 |
+
# Copy the requirements file to the container
|
8 |
+
COPY requirements.txt .
|
9 |
+
|
10 |
+
# Install the dependencies
|
11 |
+
RUN pip install -r requirements.txt
|
12 |
+
|
13 |
+
# Copy the application code to the container
|
14 |
+
COPY . .
|
15 |
+
# ENTRYPOINT ["./predict.py"]
|
16 |
+
|
17 |
+
# Set the command to run the application
|
18 |
+
CMD ["python", "predict.py"]
|
best_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0444cb1014afab6ba7c00849d430d950e4273fe6e92e6638590a98982f4b9bfe
|
3 |
+
size 953531
|
predict.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
import pickle
|
3 |
+
# import numpy as np # linear algebra
|
4 |
+
# import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
|
5 |
+
# import pandas as pd
|
6 |
+
# import numpy as np
|
7 |
+
# import re
|
8 |
+
# import nltk
|
9 |
+
# from nltk.corpus import stopwords
|
10 |
+
# from nltk.stem import WordNetLemmatizer
|
11 |
+
# from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer, TfidfTransformer
|
12 |
+
# from sklearn.decomposition import LatentDirichletAllocation
|
13 |
+
# from sklearn.model_selection import train_test_split
|
14 |
+
# from sklearn.naive_bayes import MultinomialNB
|
15 |
+
# from sklearn.metrics import accuracy_score, confusion_matrix
|
16 |
+
# from sklearn.linear_model import LogisticRegression
|
17 |
+
# from sklearn.tree import DecisionTreeClassifier
|
18 |
+
# from sklearn.ensemble import RandomForestClassifier
|
19 |
+
# from sklearn.pipeline import Pipeline
|
20 |
+
# from sklearn.model_selection import GridSearchCV
|
21 |
+
# from sklearn.metrics import classification_report
|
22 |
+
file_name = 'best_model.pkl'
|
23 |
+
with open(file_name, 'rb') as file:
|
24 |
+
model = pickle.load(file)
|
25 |
+
# ohe = joblib.load('state_ohe.pkl')
|
26 |
+
class_mapping = ['Music', 'Death', 'Environment', 'Affection']
|
27 |
+
|
28 |
+
class Profit:
|
29 |
+
|
30 |
+
def __init__(self,data):
|
31 |
+
self.data = data
|
32 |
+
|
33 |
+
def predict(self):
|
34 |
+
d_data = [data]
|
35 |
+
predict = model.predict(d_data)[0]
|
36 |
+
|
37 |
+
print(f"This prediction is: {class_mapping[predict-1]}\n")
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
print("************************")
|
41 |
+
print("Poem prediction")
|
42 |
+
print("************************\n\n")
|
43 |
+
data = input('Enter Poem: ')
|
44 |
+
|
45 |
+
obj = Profit(data)
|
46 |
+
obj.predict()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==2.0.2
|
2 |
+
numpy==1.24.3
|
3 |
+
nltk==3.8.1
|
4 |
+
scikit-learn==1.3.0
|
5 |
+
cloudpickle==2.2.1
|
6 |
+
pickleshare==0.7.5
|