Abdul Fatir Ansari commited on
Commit
6e0fc4c
1 Parent(s): e149d4e

Update README

Browse files
Files changed (1) hide show
  1. README.md +11 -9
README.md CHANGED
@@ -12,7 +12,7 @@ tags:
12
 
13
  # Chronos⚡️-Tiny
14
 
15
- Pre-release of Chronos⚡️ (read: Chronos-Bolt) pretrained time series forecasting models. Chronos⚡️ models are based on the [T5 architecture](https://arxiv.org/abs/1910.10683) and are available in the following sizes.
16
 
17
 
18
  <div align="center">
@@ -29,10 +29,14 @@ Pre-release of Chronos⚡️ (read: Chronos-Bolt) pretrained time series forecas
29
 
30
  ## Usage
31
 
32
- A minimal example showing how to perform inference using Chronos⚡️ with AutoGluon:
 
 
 
 
33
 
34
  ```
35
- pip install --pre autogluon
36
  ```
37
 
38
  ```python
@@ -40,16 +44,14 @@ from autogluon.timeseries import TimeSeriesPredictor, TimeSeriesDataFrame
40
 
41
  df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv")
42
 
43
- predictions = TimeSeriesPredictor().fit(
44
  df,
45
  hyperparameters={
46
- "Chronos": [
47
- {"model_path": "autogluon/chronos-bolt-tiny"},
48
- ]
49
  },
50
- ).predict(
51
- df
52
  )
 
 
53
  ```
54
 
55
  ## Citation
 
12
 
13
  # Chronos⚡️-Tiny
14
 
15
+ Chronos⚡️ (read: Chronos-Bolt) is a family of pretrained time series forecasting models which can be used for zero-shot forecasting. Chronos⚡️ models are based on the [T5 architecture](https://arxiv.org/abs/1910.10683) and are available in the following sizes.
16
 
17
 
18
  <div align="center">
 
29
 
30
  ## Usage
31
 
32
+ > [!WARNING]
33
+ > Chronos⚡️ models will be available in the next stable release of AutoGluon, so the following instructions will only work once AutoGluon 1.2 has been released.
34
+
35
+
36
+ A minimal example showing how to perform zero-shot inference using Chronos⚡️ with AutoGluon:
37
 
38
  ```
39
+ pip install autogluon
40
  ```
41
 
42
  ```python
 
44
 
45
  df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv")
46
 
47
+ predictor = TimeSeriesPredictor(prediction_length=48).fit(
48
  df,
49
  hyperparameters={
50
+ "Chronos": {"model_path": "autogluon/chronos-bolt-tiny"},
 
 
51
  },
 
 
52
  )
53
+
54
+ predictions = predictor.predict(df)
55
  ```
56
 
57
  ## Citation