Abdul Fatir Ansari
commited on
Commit
•
6e0fc4c
1
Parent(s):
e149d4e
Update README
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ tags:
|
|
12 |
|
13 |
# Chronos⚡️-Tiny
|
14 |
|
15 |
-
|
16 |
|
17 |
|
18 |
<div align="center">
|
@@ -29,10 +29,14 @@ Pre-release of Chronos⚡️ (read: Chronos-Bolt) pretrained time series forecas
|
|
29 |
|
30 |
## Usage
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
```
|
35 |
-
pip install
|
36 |
```
|
37 |
|
38 |
```python
|
@@ -40,16 +44,14 @@ from autogluon.timeseries import TimeSeriesPredictor, TimeSeriesDataFrame
|
|
40 |
|
41 |
df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv")
|
42 |
|
43 |
-
|
44 |
df,
|
45 |
hyperparameters={
|
46 |
-
"Chronos":
|
47 |
-
{"model_path": "autogluon/chronos-bolt-tiny"},
|
48 |
-
]
|
49 |
},
|
50 |
-
).predict(
|
51 |
-
df
|
52 |
)
|
|
|
|
|
53 |
```
|
54 |
|
55 |
## Citation
|
|
|
12 |
|
13 |
# Chronos⚡️-Tiny
|
14 |
|
15 |
+
Chronos⚡️ (read: Chronos-Bolt) is a family of pretrained time series forecasting models which can be used for zero-shot forecasting. Chronos⚡️ models are based on the [T5 architecture](https://arxiv.org/abs/1910.10683) and are available in the following sizes.
|
16 |
|
17 |
|
18 |
<div align="center">
|
|
|
29 |
|
30 |
## Usage
|
31 |
|
32 |
+
> [!WARNING]
|
33 |
+
> Chronos⚡️ models will be available in the next stable release of AutoGluon, so the following instructions will only work once AutoGluon 1.2 has been released.
|
34 |
+
|
35 |
+
|
36 |
+
A minimal example showing how to perform zero-shot inference using Chronos⚡️ with AutoGluon:
|
37 |
|
38 |
```
|
39 |
+
pip install autogluon
|
40 |
```
|
41 |
|
42 |
```python
|
|
|
44 |
|
45 |
df = TimeSeriesDataFrame("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly/train.csv")
|
46 |
|
47 |
+
predictor = TimeSeriesPredictor(prediction_length=48).fit(
|
48 |
df,
|
49 |
hyperparameters={
|
50 |
+
"Chronos": {"model_path": "autogluon/chronos-bolt-tiny"},
|
|
|
|
|
51 |
},
|
|
|
|
|
52 |
)
|
53 |
+
|
54 |
+
predictions = predictor.predict(df)
|
55 |
```
|
56 |
|
57 |
## Citation
|