--- license: gemma language: - si base_model: google/gemma-2-9b library_name: transformers --- # Gemma2 9B for Sinhala: 1000 target vocabulary size + Random target vocabulary initialization + 2x2LS/MTP/512 training This model is built on top of Gemma2 9B adapted for Sinhala using 30K target language sentences sampled from CC-100. ## Model Details * **Vocabulary**: This model has an additional 1000 target vocabulary. * **Target vocabulary initialization**: The target weights of the embedding were initialized using Random initialization. * **Training**: This model was additionally pre-trained on 30K target language sentences sampled from CC-100. The training was conducted with the 2x2LS/MTP/512 strategies introduced in the paper. ## Model Description - **Language:** Sinhala - **License:** Gemma Terms of Use - **Fine-tuned from model:** google/gemma-2-9b ## Model Sources - **Repository:** https://github.com/gucci-j/lowres-cve - **Paper:** https://arxiv.org/abs/2406.11477 ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "atsuki-yamaguchi/gemma-2-9b-si-30K-1000-rand" ) tokenizer = AutoTokenizer.from_pretrained( "atsuki-yamaguchi/gemma-2-9b-si-30K-1000-rand" ) ``` ## Citation ``` @article{yamaguchi-etal-2024-effectively, title={How Can We Effectively Expand the Vocabulary of LLMs with 0.01GB of Target Language Text?}, author={Atsuki Yamaguchi and Aline Villavicencio and Nikolaos Aletras}, year={2024}, journal={ArXiv}, year={2024}, volume={abs/2406.11477}, url={https://arxiv.org/abs/2406.11477}, } ```