--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: scibert_claim_id_2e-05 results: [] --- # scibert_claim_id_2e-05 This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0162 - Accuracy: 0.9962 - F1: 0.9880 - Precision: 0.9889 - Recall: 0.9870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3131 | 1.0 | 666 | 0.2551 | 0.8880 | 0.5518 | 0.7419 | 0.4392 | | 0.267 | 2.0 | 1332 | 0.1821 | 0.9280 | 0.7636 | 0.7875 | 0.7410 | | 0.2245 | 3.0 | 1998 | 0.0942 | 0.9695 | 0.9034 | 0.8968 | 0.9101 | | 0.1135 | 4.0 | 2664 | 0.0514 | 0.9845 | 0.9517 | 0.9339 | 0.9702 | | 0.0821 | 5.0 | 3330 | 0.0223 | 0.9944 | 0.9822 | 0.9808 | 0.9837 | | 0.0618 | 6.0 | 3996 | 0.0162 | 0.9962 | 0.9880 | 0.9889 | 0.9870 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3