--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-test-small-aug-finetuned-SLT-subset results: [] --- # videomae-base-test-small-aug-finetuned-SLT-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7786 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.12 | 2 | 1.3221 | 0.5 | | No log | 1.12 | 4 | 1.1049 | 0.5 | | No log | 2.12 | 6 | 0.9825 | 0.5 | | No log | 3.12 | 8 | 0.8929 | 0.75 | | 1.2166 | 4.12 | 10 | 0.8538 | 0.5 | | 1.2166 | 5.12 | 12 | 0.8157 | 0.5 | | 1.2166 | 6.12 | 14 | 0.7909 | 1.0 | | 1.2166 | 7.12 | 16 | 0.7786 | 1.0 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0+cpu - Datasets 2.1.0 - Tokenizers 0.13.3