File size: 2,429 Bytes
69de128 dc91723 69de128 dc91723 69de128 dc91723 69de128 dc91723 69de128 dc91723 69de128 dc91723 69de128 dc91723 69de128 dc91723 69de128 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
base_model: arun100/whisper-base-vi-1
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Base Vietnamese
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs vi_vn
type: google/fleurs
config: vi_vn
split: test
args: vi_vn
metrics:
- name: Wer
type: wer
value: 31.03382013835511
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Base Vietnamese
This model is a fine-tuned version of [arun100/whisper-base-vi-1](https://huggingface.co/arun100/whisper-base-vi-1) on the google/fleurs vi_vn dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6949
- Wer: 31.0338
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.5823 | 43.0 | 500 | 0.7964 | 37.8978 |
| 0.3312 | 86.0 | 1000 | 0.6997 | 33.7125 |
| 0.2009 | 130.0 | 1500 | 0.6784 | 32.7479 |
| 0.1271 | 173.0 | 2000 | 0.6760 | 31.9985 |
| 0.0815 | 217.0 | 2500 | 0.6799 | 31.3028 |
| 0.0561 | 260.0 | 3000 | 0.6851 | 31.2337 |
| 0.0438 | 304.0 | 3500 | 0.6896 | 31.7256 |
| 0.0367 | 347.0 | 4000 | 0.6928 | 31.5949 |
| 0.0331 | 391.0 | 4500 | 0.6949 | 31.0338 |
| 0.0317 | 434.0 | 5000 | 0.6957 | 31.0453 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0
|