huynhdoo commited on
Commit
ab177a9
1 Parent(s): 0e07166

pushing model SVC with camember base embeddings

Browse files
Files changed (4) hide show
  1. README.md +203 -0
  2. config.json +18 -0
  3. confusion_matrix.png +0 -0
  4. skops-ik6yuleb.pkl +3 -0
README.md ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ license: mit
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - text-classification
8
+ model_format: pickle
9
+ model_file: skops-ik6yuleb.pkl
10
+ ---
11
+
12
+ # Model description
13
+
14
+ This is a `Support Vector Classifier` model trained on SIRIUS dataset.As input, the model takes text embeddings encoded with camembert-base (768 tokens)
15
+
16
+ ## Intended uses & limitations
17
+
18
+ This model is not ready to be used in production.
19
+
20
+ ## Training Procedure
21
+
22
+ [More Information Needed]
23
+
24
+ ### Hyperparameters
25
+
26
+ <details>
27
+ <summary> Click to expand </summary>
28
+
29
+ | Hyperparameter | Value |
30
+ |---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
31
+ | memory | |
32
+ | steps | [('columntransformer', ColumnTransformer(transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()),<br /> ('pca',<br /> PCA(n_components=560))]),<br /> Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8',<br /> 'avg_9', 'avg_10',<br /> ...<br /> 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764',<br /> 'max_765', 'max_766', 'max_767', 'max_768'],<br /> dtype='object', length=2304))],<br /> verbose_feature_names_out=False)), ('svc', SVC(probability=True, random_state=42))] |
33
+ | verbose | False |
34
+ | columntransformer | ColumnTransformer(transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()),<br /> ('pca',<br /> PCA(n_components=560))]),<br /> Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8',<br /> 'avg_9', 'avg_10',<br /> ...<br /> 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764',<br /> 'max_765', 'max_766', 'max_767', 'max_768'],<br /> dtype='object', length=2304))],<br /> verbose_feature_names_out=False) |
35
+ | svc | SVC(probability=True, random_state=42) |
36
+ | columntransformer__force_int_remainder_cols | True |
37
+ | columntransformer__n_jobs | |
38
+ | columntransformer__remainder | drop |
39
+ | columntransformer__sparse_threshold | 0.3 |
40
+ | columntransformer__transformer_weights | |
41
+ | columntransformer__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()), ('pca', PCA(n_components=560))]), Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8',<br /> 'avg_9', 'avg_10',<br /> ...<br /> 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764',<br /> 'max_765', 'max_766', 'max_767', 'max_768'],<br /> dtype='object', length=2304))] |
42
+ | columntransformer__verbose | False |
43
+ | columntransformer__verbose_feature_names_out | False |
44
+ | columntransformer__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()), ('pca', PCA(n_components=560))]) |
45
+ | columntransformer__num__memory | |
46
+ | columntransformer__num__steps | [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('pca', PCA(n_components=560))] |
47
+ | columntransformer__num__verbose | False |
48
+ | columntransformer__num__imputer | SimpleImputer(strategy='median') |
49
+ | columntransformer__num__scaler | StandardScaler() |
50
+ | columntransformer__num__pca | PCA(n_components=560) |
51
+ | columntransformer__num__imputer__add_indicator | False |
52
+ | columntransformer__num__imputer__copy | True |
53
+ | columntransformer__num__imputer__fill_value | |
54
+ | columntransformer__num__imputer__keep_empty_features | False |
55
+ | columntransformer__num__imputer__missing_values | nan |
56
+ | columntransformer__num__imputer__strategy | median |
57
+ | columntransformer__num__scaler__copy | True |
58
+ | columntransformer__num__scaler__with_mean | True |
59
+ | columntransformer__num__scaler__with_std | True |
60
+ | columntransformer__num__pca__copy | True |
61
+ | columntransformer__num__pca__iterated_power | auto |
62
+ | columntransformer__num__pca__n_components | 560 |
63
+ | columntransformer__num__pca__n_oversamples | 10 |
64
+ | columntransformer__num__pca__power_iteration_normalizer | auto |
65
+ | columntransformer__num__pca__random_state | |
66
+ | columntransformer__num__pca__svd_solver | auto |
67
+ | columntransformer__num__pca__tol | 0.0 |
68
+ | columntransformer__num__pca__whiten | False |
69
+ | svc__C | 1.0 |
70
+ | svc__break_ties | False |
71
+ | svc__cache_size | 200 |
72
+ | svc__class_weight | |
73
+ | svc__coef0 | 0.0 |
74
+ | svc__decision_function_shape | ovr |
75
+ | svc__degree | 3 |
76
+ | svc__gamma | scale |
77
+ | svc__kernel | rbf |
78
+ | svc__max_iter | -1 |
79
+ | svc__probability | True |
80
+ | svc__random_state | 42 |
81
+ | svc__shrinking | True |
82
+ | svc__tol | 0.001 |
83
+ | svc__verbose | False |
84
+
85
+ </details>
86
+
87
+ ### Model Plot
88
+
89
+ <style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
90
+ }#sk-container-id-1 {color: var(--sklearn-color-text);
91
+ }#sk-container-id-1 pre {padding: 0;
92
+ }#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
93
+ }#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
94
+ }#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
95
+ }#sk-container-id-1 div.sk-text-repr-fallback {display: none;
96
+ }div.sk-parallel-item,
97
+ div.sk-serial,
98
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
99
+ }/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
100
+ }#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
101
+ }#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
102
+ }#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
103
+ }#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
104
+ }#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
105
+ }/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
106
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
107
+ clickable and can be expanded/collapsed.
108
+ - Pipeline and ColumnTransformer use this feature and define the default style
109
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
110
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
111
+ }/* Toggleable label */
112
+ #sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
113
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
114
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
115
+ }/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
116
+ }#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
117
+ }#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
118
+ }#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
119
+ }#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
120
+ }#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
121
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
122
+ }#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
123
+ }/* Estimator-specific style *//* Colorize estimator box */
124
+ #sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
125
+ }#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
126
+ }#sk-container-id-1 div.sk-label label.sk-toggleable__label,
127
+ #sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
128
+ }/* On hover, darken the color of the background */
129
+ #sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
130
+ }/* Label box, darken color on hover, fitted */
131
+ #sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
132
+ }/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
133
+ }#sk-container-id-1 div.sk-label-container {text-align: center;
134
+ }/* Estimator-specific */
135
+ #sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
136
+ }#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
137
+ }/* on hover */
138
+ #sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
139
+ }#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
140
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
141
+ a:link.sk-estimator-doc-link,
142
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
143
+ }.sk-estimator-doc-link.fitted,
144
+ a:link.sk-estimator-doc-link.fitted,
145
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
146
+ }/* On hover */
147
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
148
+ .sk-estimator-doc-link:hover,
149
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
150
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
151
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
152
+ .sk-estimator-doc-link.fitted:hover,
153
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
154
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
155
+ }/* Span, style for the box shown on hovering the info icon */
156
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
157
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
158
+ }.sk-estimator-doc-link:hover span {display: block;
159
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
160
+ }#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
161
+ }/* On hover */
162
+ #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
163
+ }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
164
+ }
165
+ </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;,StandardScaler()),(&#x27;pca&#x27;,PCA(n_components=560))]),Index([&#x27;avg_1&#x27;, &#x27;avg_2&#x27;, &#x27;avg_3&#x27;, &#x27;avg_4&#x27;, &#x27;avg_5&#x27;, &#x27;avg_6&#x27;, &#x27;avg_7&#x27;, &#x27;avg_8&#x27;,&#x27;avg_9&#x27;, &#x27;avg_10&#x27;,...&#x27;max_759&#x27;, &#x27;max_760&#x27;, &#x27;max_761&#x27;, &#x27;max_762&#x27;, &#x27;max_763&#x27;, &#x27;max_764&#x27;,&#x27;max_765&#x27;, &#x27;max_766&#x27;, &#x27;max_767&#x27;, &#x27;max_768&#x27;],dtype=&#x27;object&#x27;, length=2304))],verbose_feature_names_out=False)),(&#x27;svc&#x27;, SVC(probability=True, random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;columntransformer&#x27;,ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;,StandardScaler()),(&#x27;pca&#x27;,PCA(n_components=560))]),Index([&#x27;avg_1&#x27;, &#x27;avg_2&#x27;, &#x27;avg_3&#x27;, &#x27;avg_4&#x27;, &#x27;avg_5&#x27;, &#x27;avg_6&#x27;, &#x27;avg_7&#x27;, &#x27;avg_8&#x27;,&#x27;avg_9&#x27;, &#x27;avg_10&#x27;,...&#x27;max_759&#x27;, &#x27;max_760&#x27;, &#x27;max_761&#x27;, &#x27;max_762&#x27;, &#x27;max_763&#x27;, &#x27;max_764&#x27;,&#x27;max_765&#x27;, &#x27;max_766&#x27;, &#x27;max_767&#x27;, &#x27;max_768&#x27;],dtype=&#x27;object&#x27;, length=2304))],verbose_feature_names_out=False)),(&#x27;svc&#x27;, SVC(probability=True, random_state=42))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;columntransformer: ColumnTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for columntransformer: ColumnTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>ColumnTransformer(transformers=[(&#x27;num&#x27;,Pipeline(steps=[(&#x27;imputer&#x27;,SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;, StandardScaler()),(&#x27;pca&#x27;,PCA(n_components=560))]),Index([&#x27;avg_1&#x27;, &#x27;avg_2&#x27;, &#x27;avg_3&#x27;, &#x27;avg_4&#x27;, &#x27;avg_5&#x27;, &#x27;avg_6&#x27;, &#x27;avg_7&#x27;, &#x27;avg_8&#x27;,&#x27;avg_9&#x27;, &#x27;avg_10&#x27;,...&#x27;max_759&#x27;, &#x27;max_760&#x27;, &#x27;max_761&#x27;, &#x27;max_762&#x27;, &#x27;max_763&#x27;, &#x27;max_764&#x27;,&#x27;max_765&#x27;, &#x27;max_766&#x27;, &#x27;max_767&#x27;, &#x27;max_768&#x27;],dtype=&#x27;object&#x27;, length=2304))],verbose_feature_names_out=False)</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">num</label><div class="sk-toggleable__content fitted"><pre>Index([&#x27;avg_1&#x27;, &#x27;avg_2&#x27;, &#x27;avg_3&#x27;, &#x27;avg_4&#x27;, &#x27;avg_5&#x27;, &#x27;avg_6&#x27;, &#x27;avg_7&#x27;, &#x27;avg_8&#x27;,&#x27;avg_9&#x27;, &#x27;avg_10&#x27;,...&#x27;max_759&#x27;, &#x27;max_760&#x27;, &#x27;max_761&#x27;, &#x27;max_762&#x27;, &#x27;max_763&#x27;, &#x27;max_764&#x27;,&#x27;max_765&#x27;, &#x27;max_766&#x27;, &#x27;max_767&#x27;, &#x27;max_768&#x27;],dtype=&#x27;object&#x27;, length=2304)</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;StandardScaler<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.StandardScaler.html">?<span>Documentation for StandardScaler</span></a></label><div class="sk-toggleable__content fitted"><pre>StandardScaler()</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;PCA<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.decomposition.PCA.html">?<span>Documentation for PCA</span></a></label><div class="sk-toggleable__content fitted"><pre>PCA(n_components=560)</pre></div> </div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SVC<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.svm.SVC.html">?<span>Documentation for SVC</span></a></label><div class="sk-toggleable__content fitted"><pre>SVC(probability=True, random_state=42)</pre></div> </div></div></div></div></div></div>
166
+
167
+ ## Evaluation Results
168
+
169
+ | Metric | Value |
170
+ |----------|----------|
171
+ | accuracy | 0.972222 |
172
+ | f1 score | 0.972214 |
173
+
174
+ ### Confusion Matrix
175
+
176
+ ![Confusion Matrix](confusion_matrix.png)
177
+
178
+ # How to Get Started with the Model
179
+
180
+ [More Information Needed]
181
+
182
+ # Model Card Authors
183
+
184
+ huynhdoo
185
+
186
+ # Model Card Contact
187
+
188
+ You can contact the model card authors through following channels:
189
+ [More Information Needed]
190
+
191
+ # Citation
192
+
193
+ **BibTeX**
194
+
195
+ ```
196
+ @inproceedings{...,year={2024}}
197
+ ```
198
+
199
+ # get_started_code
200
+
201
+ import pickle as pickle
202
+ with open(pkl_filename, 'rb') as file:
203
+ pipe = pickle.load(file)
config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "environment": [
4
+ "scikit-learn=1.5.1"
5
+ ],
6
+ "example_input": {
7
+ "data": [
8
+ "",
9
+ ""
10
+ ]
11
+ },
12
+ "model": {
13
+ "file": "skops-ik6yuleb.pkl"
14
+ },
15
+ "model_format": "pickle",
16
+ "task": "text-classification"
17
+ }
18
+ }
confusion_matrix.png ADDED
skops-ik6yuleb.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ab2306a010fbb2eab1fe034266bded2cf9c89c3f1a0a21fcc70f2fa70860903
3
+ size 20087916