pushing model SVC with camember base embeddings
Browse files- README.md +203 -0
- config.json +18 -0
- confusion_matrix.png +0 -0
- skops-ik6yuleb.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- sklearn
|
6 |
+
- skops
|
7 |
+
- text-classification
|
8 |
+
model_format: pickle
|
9 |
+
model_file: skops-ik6yuleb.pkl
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model description
|
13 |
+
|
14 |
+
This is a `Support Vector Classifier` model trained on SIRIUS dataset.As input, the model takes text embeddings encoded with camembert-base (768 tokens)
|
15 |
+
|
16 |
+
## Intended uses & limitations
|
17 |
+
|
18 |
+
This model is not ready to be used in production.
|
19 |
+
|
20 |
+
## Training Procedure
|
21 |
+
|
22 |
+
[More Information Needed]
|
23 |
+
|
24 |
+
### Hyperparameters
|
25 |
+
|
26 |
+
<details>
|
27 |
+
<summary> Click to expand </summary>
|
28 |
+
|
29 |
+
| Hyperparameter | Value |
|
30 |
+
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|
31 |
+
| memory | |
|
32 |
+
| steps | [('columntransformer', ColumnTransformer(transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()),<br /> ('pca',<br /> PCA(n_components=560))]),<br /> Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8',<br /> 'avg_9', 'avg_10',<br /> ...<br /> 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764',<br /> 'max_765', 'max_766', 'max_767', 'max_768'],<br /> dtype='object', length=2304))],<br /> verbose_feature_names_out=False)), ('svc', SVC(probability=True, random_state=42))] |
|
33 |
+
| verbose | False |
|
34 |
+
| columntransformer | ColumnTransformer(transformers=[('num',<br /> Pipeline(steps=[('imputer',<br /> SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()),<br /> ('pca',<br /> PCA(n_components=560))]),<br /> Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8',<br /> 'avg_9', 'avg_10',<br /> ...<br /> 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764',<br /> 'max_765', 'max_766', 'max_767', 'max_768'],<br /> dtype='object', length=2304))],<br /> verbose_feature_names_out=False) |
|
35 |
+
| svc | SVC(probability=True, random_state=42) |
|
36 |
+
| columntransformer__force_int_remainder_cols | True |
|
37 |
+
| columntransformer__n_jobs | |
|
38 |
+
| columntransformer__remainder | drop |
|
39 |
+
| columntransformer__sparse_threshold | 0.3 |
|
40 |
+
| columntransformer__transformer_weights | |
|
41 |
+
| columntransformer__transformers | [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()), ('pca', PCA(n_components=560))]), Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8',<br /> 'avg_9', 'avg_10',<br /> ...<br /> 'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764',<br /> 'max_765', 'max_766', 'max_767', 'max_768'],<br /> dtype='object', length=2304))] |
|
42 |
+
| columntransformer__verbose | False |
|
43 |
+
| columntransformer__verbose_feature_names_out | False |
|
44 |
+
| columntransformer__num | Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),<br /> ('scaler', StandardScaler()), ('pca', PCA(n_components=560))]) |
|
45 |
+
| columntransformer__num__memory | |
|
46 |
+
| columntransformer__num__steps | [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('pca', PCA(n_components=560))] |
|
47 |
+
| columntransformer__num__verbose | False |
|
48 |
+
| columntransformer__num__imputer | SimpleImputer(strategy='median') |
|
49 |
+
| columntransformer__num__scaler | StandardScaler() |
|
50 |
+
| columntransformer__num__pca | PCA(n_components=560) |
|
51 |
+
| columntransformer__num__imputer__add_indicator | False |
|
52 |
+
| columntransformer__num__imputer__copy | True |
|
53 |
+
| columntransformer__num__imputer__fill_value | |
|
54 |
+
| columntransformer__num__imputer__keep_empty_features | False |
|
55 |
+
| columntransformer__num__imputer__missing_values | nan |
|
56 |
+
| columntransformer__num__imputer__strategy | median |
|
57 |
+
| columntransformer__num__scaler__copy | True |
|
58 |
+
| columntransformer__num__scaler__with_mean | True |
|
59 |
+
| columntransformer__num__scaler__with_std | True |
|
60 |
+
| columntransformer__num__pca__copy | True |
|
61 |
+
| columntransformer__num__pca__iterated_power | auto |
|
62 |
+
| columntransformer__num__pca__n_components | 560 |
|
63 |
+
| columntransformer__num__pca__n_oversamples | 10 |
|
64 |
+
| columntransformer__num__pca__power_iteration_normalizer | auto |
|
65 |
+
| columntransformer__num__pca__random_state | |
|
66 |
+
| columntransformer__num__pca__svd_solver | auto |
|
67 |
+
| columntransformer__num__pca__tol | 0.0 |
|
68 |
+
| columntransformer__num__pca__whiten | False |
|
69 |
+
| svc__C | 1.0 |
|
70 |
+
| svc__break_ties | False |
|
71 |
+
| svc__cache_size | 200 |
|
72 |
+
| svc__class_weight | |
|
73 |
+
| svc__coef0 | 0.0 |
|
74 |
+
| svc__decision_function_shape | ovr |
|
75 |
+
| svc__degree | 3 |
|
76 |
+
| svc__gamma | scale |
|
77 |
+
| svc__kernel | rbf |
|
78 |
+
| svc__max_iter | -1 |
|
79 |
+
| svc__probability | True |
|
80 |
+
| svc__random_state | 42 |
|
81 |
+
| svc__shrinking | True |
|
82 |
+
| svc__tol | 0.001 |
|
83 |
+
| svc__verbose | False |
|
84 |
+
|
85 |
+
</details>
|
86 |
+
|
87 |
+
### Model Plot
|
88 |
+
|
89 |
+
<style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
|
90 |
+
}#sk-container-id-1 {color: var(--sklearn-color-text);
|
91 |
+
}#sk-container-id-1 pre {padding: 0;
|
92 |
+
}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
|
93 |
+
}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
|
94 |
+
}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
|
95 |
+
}#sk-container-id-1 div.sk-text-repr-fallback {display: none;
|
96 |
+
}div.sk-parallel-item,
|
97 |
+
div.sk-serial,
|
98 |
+
div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
|
99 |
+
}/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
|
100 |
+
}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
|
101 |
+
}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
|
102 |
+
}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
|
103 |
+
}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
|
104 |
+
}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
|
105 |
+
}/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
|
106 |
+
}/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
|
107 |
+
clickable and can be expanded/collapsed.
|
108 |
+
- Pipeline and ColumnTransformer use this feature and define the default style
|
109 |
+
- Estimators will overwrite some part of the style using the `sk-estimator` class
|
110 |
+
*//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
|
111 |
+
}/* Toggleable label */
|
112 |
+
#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
|
113 |
+
}#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
|
114 |
+
}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
|
115 |
+
}/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
|
116 |
+
}#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
|
117 |
+
}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
|
118 |
+
}#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
|
119 |
+
}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
|
120 |
+
}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
|
121 |
+
}/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
|
122 |
+
}#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
|
123 |
+
}/* Estimator-specific style *//* Colorize estimator box */
|
124 |
+
#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
|
125 |
+
}#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
|
126 |
+
}#sk-container-id-1 div.sk-label label.sk-toggleable__label,
|
127 |
+
#sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
|
128 |
+
}/* On hover, darken the color of the background */
|
129 |
+
#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
|
130 |
+
}/* Label box, darken color on hover, fitted */
|
131 |
+
#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
|
132 |
+
}/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
|
133 |
+
}#sk-container-id-1 div.sk-label-container {text-align: center;
|
134 |
+
}/* Estimator-specific */
|
135 |
+
#sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
|
136 |
+
}#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
|
137 |
+
}/* on hover */
|
138 |
+
#sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
|
139 |
+
}#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
|
140 |
+
}/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
|
141 |
+
a:link.sk-estimator-doc-link,
|
142 |
+
a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
|
143 |
+
}.sk-estimator-doc-link.fitted,
|
144 |
+
a:link.sk-estimator-doc-link.fitted,
|
145 |
+
a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
|
146 |
+
}/* On hover */
|
147 |
+
div.sk-estimator:hover .sk-estimator-doc-link:hover,
|
148 |
+
.sk-estimator-doc-link:hover,
|
149 |
+
div.sk-label-container:hover .sk-estimator-doc-link:hover,
|
150 |
+
.sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
151 |
+
}div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
|
152 |
+
.sk-estimator-doc-link.fitted:hover,
|
153 |
+
div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
|
154 |
+
.sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
155 |
+
}/* Span, style for the box shown on hovering the info icon */
|
156 |
+
.sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
|
157 |
+
}.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
|
158 |
+
}.sk-estimator-doc-link:hover span {display: block;
|
159 |
+
}/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
|
160 |
+
}#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
|
161 |
+
}/* On hover */
|
162 |
+
#sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
163 |
+
}#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
|
164 |
+
}
|
165 |
+
</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler',StandardScaler()),('pca',PCA(n_components=560))]),Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8','avg_9', 'avg_10',...'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764','max_765', 'max_766', 'max_767', 'max_768'],dtype='object', length=2304))],verbose_feature_names_out=False)),('svc', SVC(probability=True, random_state=42))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler',StandardScaler()),('pca',PCA(n_components=560))]),Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8','avg_9', 'avg_10',...'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764','max_765', 'max_766', 'max_767', 'max_768'],dtype='object', length=2304))],verbose_feature_names_out=False)),('svc', SVC(probability=True, random_state=42))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> columntransformer: ColumnTransformer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.compose.ColumnTransformer.html">?<span>Documentation for columntransformer: ColumnTransformer</span></a></label><div class="sk-toggleable__content fitted"><pre>ColumnTransformer(transformers=[('num',Pipeline(steps=[('imputer',SimpleImputer(strategy='median')),('scaler', StandardScaler()),('pca',PCA(n_components=560))]),Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8','avg_9', 'avg_10',...'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764','max_765', 'max_766', 'max_767', 'max_768'],dtype='object', length=2304))],verbose_feature_names_out=False)</pre></div> </div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">num</label><div class="sk-toggleable__content fitted"><pre>Index(['avg_1', 'avg_2', 'avg_3', 'avg_4', 'avg_5', 'avg_6', 'avg_7', 'avg_8','avg_9', 'avg_10',...'max_759', 'max_760', 'max_761', 'max_762', 'max_763', 'max_764','max_765', 'max_766', 'max_767', 'max_768'],dtype='object', length=2304)</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-4" type="checkbox" ><label for="sk-estimator-id-4" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy='median')</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" ><label for="sk-estimator-id-5" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> StandardScaler<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.preprocessing.StandardScaler.html">?<span>Documentation for StandardScaler</span></a></label><div class="sk-toggleable__content fitted"><pre>StandardScaler()</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-6" type="checkbox" ><label for="sk-estimator-id-6" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> PCA<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.decomposition.PCA.html">?<span>Documentation for PCA</span></a></label><div class="sk-toggleable__content fitted"><pre>PCA(n_components=560)</pre></div> </div></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-7" type="checkbox" ><label for="sk-estimator-id-7" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> SVC<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.svm.SVC.html">?<span>Documentation for SVC</span></a></label><div class="sk-toggleable__content fitted"><pre>SVC(probability=True, random_state=42)</pre></div> </div></div></div></div></div></div>
|
166 |
+
|
167 |
+
## Evaluation Results
|
168 |
+
|
169 |
+
| Metric | Value |
|
170 |
+
|----------|----------|
|
171 |
+
| accuracy | 0.972222 |
|
172 |
+
| f1 score | 0.972214 |
|
173 |
+
|
174 |
+
### Confusion Matrix
|
175 |
+
|
176 |
+
![Confusion Matrix](confusion_matrix.png)
|
177 |
+
|
178 |
+
# How to Get Started with the Model
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
# Model Card Authors
|
183 |
+
|
184 |
+
huynhdoo
|
185 |
+
|
186 |
+
# Model Card Contact
|
187 |
+
|
188 |
+
You can contact the model card authors through following channels:
|
189 |
+
[More Information Needed]
|
190 |
+
|
191 |
+
# Citation
|
192 |
+
|
193 |
+
**BibTeX**
|
194 |
+
|
195 |
+
```
|
196 |
+
@inproceedings{...,year={2024}}
|
197 |
+
```
|
198 |
+
|
199 |
+
# get_started_code
|
200 |
+
|
201 |
+
import pickle as pickle
|
202 |
+
with open(pkl_filename, 'rb') as file:
|
203 |
+
pipe = pickle.load(file)
|
config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"environment": [
|
4 |
+
"scikit-learn=1.5.1"
|
5 |
+
],
|
6 |
+
"example_input": {
|
7 |
+
"data": [
|
8 |
+
"",
|
9 |
+
""
|
10 |
+
]
|
11 |
+
},
|
12 |
+
"model": {
|
13 |
+
"file": "skops-ik6yuleb.pkl"
|
14 |
+
},
|
15 |
+
"model_format": "pickle",
|
16 |
+
"task": "text-classification"
|
17 |
+
}
|
18 |
+
}
|
confusion_matrix.png
ADDED
skops-ik6yuleb.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ab2306a010fbb2eab1fe034266bded2cf9c89c3f1a0a21fcc70f2fa70860903
|
3 |
+
size 20087916
|