--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: google-bert/bert-base-uncased metrics: - accuracy - f1 model-index: - name: loha_fine_tuned_boolq results: [] --- # loha_fine_tuned_boolq This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5655 - Accuracy: 0.7778 - F1: 0.6806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | 0.6686 | 4.1667 | 50 | 0.6058 | 0.7778 | 0.6806 | | 0.661 | 8.3333 | 100 | 0.5835 | 0.7778 | 0.6806 | | 0.66 | 12.5 | 150 | 0.5765 | 0.7778 | 0.6806 | | 0.6685 | 16.6667 | 200 | 0.5708 | 0.7778 | 0.6806 | | 0.6634 | 20.8333 | 250 | 0.5677 | 0.7778 | 0.6806 | | 0.6573 | 25.0 | 300 | 0.5668 | 0.7778 | 0.6806 | | 0.6623 | 29.1667 | 350 | 0.5661 | 0.7778 | 0.6806 | | 0.6583 | 33.3333 | 400 | 0.5655 | 0.7778 | 0.6806 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.1 - Pytorch 2.1.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1