File size: 2,292 Bytes
04aa4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24bcd4e
 
04aa4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b043afd
 
04aa4f4
 
 
af6b16d
04aa4f4
 
 
b043afd
 
24bcd4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04aa4f4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0098
- Accuracy: 0.9009

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3073        | 1.0   | 5250  | 0.2758          | 0.8925   |
| 0.2356        | 2.0   | 10500 | 0.2988          | 0.8988   |
| 0.1834        | 3.0   | 15750 | 0.3662          | 0.8989   |
| 0.1403        | 4.0   | 21000 | 0.4688          | 0.8955   |
| 0.1038        | 5.0   | 26250 | 0.5136          | 0.8925   |
| 0.0788        | 6.0   | 31500 | 0.6189          | 0.8954   |
| 0.0687        | 7.0   | 36750 | 0.6439          | 0.8947   |
| 0.0439        | 8.0   | 42000 | 0.7104          | 0.8991   |
| 0.035         | 9.0   | 47250 | 0.7527          | 0.8983   |
| 0.0205        | 10.0  | 52500 | 0.8317          | 0.9011   |
| 0.0258        | 11.0  | 57750 | 0.8488          | 0.9003   |
| 0.0174        | 12.0  | 63000 | 0.8577          | 0.9027   |
| 0.0095        | 13.0  | 68250 | 0.9242          | 0.9007   |
| 0.0096        | 14.0  | 73500 | 1.0134          | 0.9003   |
| 0.0083        | 15.0  | 78750 | 1.0098          | 0.9009   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3