File size: 6,069 Bytes
e2c1514
23ef30d
 
e2c1514
 
23ef30d
 
e2c1514
d8f109b
 
e2c1514
d8f109b
e2c1514
 
 
 
 
 
d8f109b
e2c1514
23ef30d
e2c1514
23ef30d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2c1514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
language:
- all
license: apache-2.0
tags:
- fleurs-asr
- google/xtreme_s
- generated_from_trainer
datasets:
- google/xtreme_s
model-index:
- name: xtreme_s_xlsr_300m_fleurs_asr_western_european
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xtreme_s_xlsr_300m_fleurs_asr_western_european

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the GOOGLE/XTREME_S - FLEURS.ALL dataset.
It achieves the following results on the evaluation set:
- Cer: 0.2484
- Cer Ast Es: 0.1598
- Cer Bs Ba: 0.1749
- Cer Ca Es: 0.1655
- Cer Cy Gb: 0.2280
- Cer Da Dk: 0.3616
- Cer De De: 0.1287
- Cer El Gr: 0.6020
- Cer En Us: 0.1938
- Cer Es 419: 0.1288
- Cer Fi Fi: 0.2050
- Cer Fr Fr: 0.1811
- Cer Ga Ie: 0.4474
- Cer Gl Es: 0.1324
- Cer Hr Hr: 0.1555
- Cer Hu Hu: 0.3911
- Cer Is Is: 0.4646
- Cer It It: 0.1283
- Cer Kea Cv: 0.1818
- Cer Lb Lu: 0.2594
- Cer Mt Mt: 0.3628
- Cer Nb No: 0.2254
- Cer Nl Nl: 0.1790
- Cer Oci Fr: 0.2159
- Cer Pt Br: 0.2275
- Cer Sv Se: 0.3092
- Loss: 1.3089
- Loss Ast Es: 0.7715
- Loss Bs Ba: 0.7378
- Loss Ca Es: 0.7868
- Loss Cy Gb: 1.1441
- Loss Da Dk: 1.9130
- Loss De De: 0.5391
- Loss El Gr: 3.4904
- Loss En Us: 0.9632
- Loss Es 419: 0.6186
- Loss Fi Fi: 0.8953
- Loss Fr Fr: 0.9076
- Loss Ga Ie: 3.0217
- Loss Gl Es: 0.5788
- Loss Hr Hr: 0.6462
- Loss Hu Hu: 1.9029
- Loss Is Is: 2.6551
- Loss It It: 0.6052
- Loss Kea Cv: 0.9107
- Loss Lb Lu: 1.3705
- Loss Mt Mt: 2.3651
- Loss Nb No: 1.1518
- Loss Nl Nl: 0.8490
- Loss Oci Fr: 1.1421
- Loss Pt Br: 1.1641
- Loss Sv Se: 1.5910
- Wer: 0.6451
- Wer Ast Es: 0.4654
- Wer Bs Ba: 0.5443
- Wer Ca Es: 0.4979
- Wer Cy Gb: 0.5962
- Wer Da Dk: 0.8455
- Wer De De: 0.4221
- Wer El Gr: 0.9805
- Wer En Us: 0.4556
- Wer Es 419: 0.3928
- Wer Fi Fi: 0.8116
- Wer Fr Fr: 0.4690
- Wer Ga Ie: 0.8519
- Wer Gl Es: 0.4245
- Wer Hr Hr: 0.4895
- Wer Hu Hu: 0.9099
- Wer Is Is: 0.9960
- Wer It It: 0.4415
- Wer Kea Cv: 0.5202
- Wer Lb Lu: 0.7225
- Wer Mt Mt: 1.0096
- Wer Nb No: 0.6541
- Wer Nl Nl: 0.5257
- Wer Oci Fr: 0.5770
- Wer Pt Br: 0.6685
- Wer Sv Se: 0.8546
- Predict Samples: 20043

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 3.1411        | 0.49  | 500   | 3.1673          | 1.0    | 1.0    |
| 0.6397        | 0.97  | 1000  | 0.9039          | 0.7171 | 0.2862 |
| 0.4033        | 1.46  | 1500  | 0.8914          | 0.6862 | 0.2763 |
| 0.3473        | 1.94  | 2000  | 0.8017          | 0.6505 | 0.2536 |
| 0.3143        | 2.43  | 2500  | 0.8568          | 0.6566 | 0.2627 |
| 0.3004        | 2.91  | 3000  | 0.8898          | 0.6640 | 0.2686 |
| 0.282         | 3.4   | 3500  | 0.8489          | 0.6637 | 0.2571 |
| 0.2489        | 3.88  | 4000  | 0.8955          | 0.6744 | 0.2691 |
| 0.1706        | 4.37  | 4500  | 0.9190          | 0.6788 | 0.2688 |
| 0.3336        | 4.85  | 5000  | 0.8915          | 0.6594 | 0.2572 |
| 0.1426        | 5.34  | 5500  | 0.9501          | 0.6784 | 0.2686 |
| 0.2301        | 5.83  | 6000  | 1.0217          | 0.6719 | 0.2735 |
| 0.1325        | 6.31  | 6500  | 0.9578          | 0.6691 | 0.2655 |
| 0.1145        | 6.8   | 7000  | 0.9129          | 0.6680 | 0.2593 |
| 0.1202        | 7.28  | 7500  | 0.9646          | 0.6749 | 0.2619 |
| 0.143         | 7.77  | 8000  | 0.9200          | 0.6554 | 0.2554 |
| 0.1012        | 8.25  | 8500  | 0.9553          | 0.6787 | 0.2628 |
| 0.1018        | 8.74  | 9000  | 0.9455          | 0.6445 | 0.2511 |
| 0.1148        | 9.22  | 9500  | 1.0206          | 0.6725 | 0.2629 |
| 0.0794        | 9.71  | 10000 | 0.9305          | 0.6547 | 0.2526 |
| 0.2891        | 10.19 | 10500 | 1.0424          | 0.6709 | 0.2570 |
| 0.1665        | 10.68 | 11000 | 0.9760          | 0.6596 | 0.2507 |
| 0.1956        | 11.17 | 11500 | 0.9549          | 0.6340 | 0.2440 |
| 0.0828        | 11.65 | 12000 | 0.9598          | 0.6403 | 0.2460 |
| 0.059         | 12.14 | 12500 | 0.9972          | 0.6574 | 0.2531 |
| 0.0505        | 12.62 | 13000 | 0.9836          | 0.6534 | 0.2525 |
| 0.0336        | 13.11 | 13500 | 1.0619          | 0.6564 | 0.2519 |
| 0.0435        | 13.59 | 14000 | 1.0844          | 0.6480 | 0.2543 |
| 0.0216        | 14.08 | 14500 | 1.1084          | 0.6512 | 0.2521 |
| 0.0265        | 14.56 | 15000 | 1.1152          | 0.6607 | 0.2563 |
| 0.0975        | 15.05 | 15500 | 1.1060          | 0.6456 | 0.2471 |
| 0.1396        | 15.53 | 16000 | 1.1100          | 0.6337 | 0.2418 |
| 0.0701        | 16.02 | 16500 | 1.1731          | 0.6309 | 0.2415 |
| 0.1171        | 16.5  | 17000 | 1.1302          | 0.6315 | 0.2396 |
| 0.0778        | 16.99 | 17500 | 1.1485          | 0.6379 | 0.2447 |
| 0.0642        | 17.48 | 18000 | 1.2009          | 0.6400 | 0.2464 |
| 0.0322        | 17.96 | 18500 | 1.2028          | 0.6357 | 0.2425 |
| 0.031         | 18.45 | 19000 | 1.2381          | 0.6285 | 0.2416 |
| 0.0579        | 18.93 | 19500 | 1.2299          | 0.6265 | 0.2409 |
| 0.0628        | 19.42 | 20000 | 1.2582          | 0.6277 | 0.2395 |
| 0.074         | 19.9  | 20500 | 1.2572          | 0.6278 | 0.2394 |


### Framework versions

- Transformers 4.18.0.dev0
- Pytorch 1.10.1+cu111
- Datasets 1.18.4.dev0
- Tokenizers 0.11.6