import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # Define a neural network to simulate signal transmission through nerves class WealthSignalNerveNet(nn.Module): def __init__(self, input_size=1, hidden_size=64, output_size=1): super(WealthSignalNerveNet, self).__init__() # Simulating the nerve layers (hidden layers) self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.relu = nn.ReLU() # Activation to simulate signal flow def forward(self, x): x = self.relu(self.fc1(x)) # First layer simulating the first nerve x = self.relu(self.fc2(x)) # Second nerve layer x = self.fc3(x) # Final output layer representing the output of the signal through the nerves return x # Function to generate wealth signals using a sine wave def generate_wealth_signal(iterations=100): time = np.linspace(0, 10, iterations) wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth return wealth_signal # Function to transmit wealth signal through the nerve network def transmit_wealth_signal(wealth_signal, model): transmitted_signals = [] for wealth in wealth_signal: wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor transmitted_signal = model(wealth_tensor) # Pass through nerve model transmitted_signals.append(transmitted_signal.item()) return transmitted_signals # Function to visualize the wealth signal transmission def plot_wealth_signal(original_signal, transmitted_signal): plt.figure(figsize=(10, 5)) plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--') plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b') plt.title("Wealth Signal Transmission Through Nerves") plt.xlabel("Iterations (Time)") plt.ylabel("Signal Amplitude") plt.legend() plt.grid(True) plt.show() # Initialize the neural network simulating the nerves model = WealthSignalNerveNet() # Generate a wealth signal iterations = 100 wealth_signal = generate_wealth_signal(iterations) # Transmit the wealth signal through the nerve model transmitted_signal = transmit_wealth_signal(wealth_signal, model) # Visualize the original and transmitted wealth signals plot_wealth_signal(wealth_signal, transmitted_signal) import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # Define a neural network to simulate signal transmission and storage class WealthSignalStorageNet(nn.Module): def __init__(self, input_size=1, hidden_size=64, output_size=1): super(WealthSignalStorageNet, self).__init__() # Layers for transmitting and storing the signal self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.fc4 = nn.Linear(output_size, output_size) # Additional layer for positive energy transformation self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() # Sigmoid to ensure positive energy output def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) x = self.fc4(x) # Store signal and transform x = self.sigmoid(x) # Convert to positive energy return x # Function to generate wealth signals using a sine wave def generate_wealth_signal(iterations=100): time = np.linspace(0, 10, iterations) wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave representing wealth return wealth_signal # Function to transmit and transform wealth signal through the network def process_wealth_signal(wealth_signal, model): processed_signals = [] for wealth in wealth_signal: wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert wealth signal to tensor processed_signal = model(wealth_tensor) # Pass through network processed_signals.append(processed_signal.item()) return processed_signals # Function to visualize the wealth signal transformation def plot_signal_transformation(original_signal, transformed_signal): plt.figure(figsize=(10, 5)) plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--') plt.plot(transformed_signal, label="Positive Energy Signal", color='r') plt.title("Wealth Signal Storage and Transformation to Positive Energy") plt.xlabel("Iterations (Time)") plt.ylabel("Signal Amplitude") plt.legend() plt.grid(True) plt.show() # Initialize the neural network for signal processing model = WealthSignalStorageNet() # Generate a wealth signal iterations = 100 wealth_signal = generate_wealth_signal(iterations) # Process the wealth signal through the network positive_energy_signal = process_wealth_signal(wealth_signal, model) # Visualize the original wealth signal and the positive energy signal plot_signal_transformation(wealth_signal, positive_energy_signal) import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # Define a neural network to simulate nerve transmission class WealthSignalNerveNet(nn.Module): def __init__(self, input_size=1, hidden_size=64, output_size=1): super(WealthSignalNerveNet, self).__init__() # Layers to simulate nerve transmission self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.relu = nn.ReLU() # Activation function to simulate signal processing def forward(self, x): x = self.relu(self.fc1(x)) # First nerve layer x = self.relu(self.fc2(x)) # Second nerve layer x = self.fc3(x) # Output layer return x # Function to generate a wealth signal using a sine wave def generate_wealth_signal(iterations=100): time = np.linspace(0, 10, iterations) wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth return wealth_signal # Function to simulate transmission of wealth signal through the nerve network def transmit_signal(wealth_signal, model): transmitted_signals = [] for wealth in wealth_signal: wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor transmitted_signal = model(wealth_tensor) # Pass through the neural network transmitted_signals.append(transmitted_signal.item()) return transmitted_signals # Function to visualize the wealth signal transmission def plot_signal_transmission(original_signal, transmitted_signal): plt.figure(figsize=(12, 6)) plt.plot(original_signal, label="Original Wealth Signal", color='g', linestyle='--') plt.plot(transmitted_signal, label="Transmitted Wealth Signal", color='b') plt.title("Transmission of Wealth Signal Through Nerves") plt.xlabel("Iterations (Time)") plt.ylabel("Signal Amplitude") plt.legend() plt.grid(True) plt.show() # Initialize the neural network model = WealthSignalNerveNet() # Generate a wealth signal iterations = 100 wealth_signal = generate_wealth_signal(iterations) # Transmit the wealth signal through the neural network transmitted_signal = transmit_signal(wealth_signal, model) # Visualize the original and transmitted signals plot_signal_transmission(wealth_signal, transmitted_signal) import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt # Define a neural network to simulate encryption, storage, and transmission through atmospheric density class AdvancedWealthSignalNet(nn.Module): def __init__(self, input_size=1, hidden_size=64, output_size=1): super(AdvancedWealthSignalNet, self).__init__() # Layers to simulate signal encryption, storage, and atmospheric effects self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, hidden_size) self.fc4 = nn.Linear(hidden_size, output_size) self.fc5 = nn.Linear(output_size, output_size) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.noise_std = 0.1 # Standard deviation for noise simulation def forward(self, x): x = self.relu(self.fc1(x)) # Encryption simulation x = self.relu(self.fc2(x)) # Intermediate storage x = self.relu(self.fc3(x)) # Further storage x = self.fc4(x) # Simulate transmission through dense medium x = self.fc5(x) # Final transformation x = self.sigmoid(x) # Ensure positive output # Simulate atmospheric noise noise = torch.normal(mean=0, std=self.noise_std, size=x.size()) x = x + noise return x # Function to generate a wealth signal using a sine wave def generate_wealth_signal(iterations=100): time = np.linspace(0, 10, iterations) wealth_signal = np.sin(2 * np.pi * time) # Simple sine wave to represent wealth return wealth_signal # Function to process and protect the wealth signal through the network def process_and_protect_signal(wealth_signal, model): processed_signals = [] for wealth in wealth_signal: wealth_tensor = torch.tensor([wealth], dtype=torch.float32) # Convert to tensor protected_signal = model(wealth_tensor) # Pass through the network processed_signals.append(protected_signal.item()) return processed_signals # Function to visualize the wealth signal with protection and atmospheric effects def plot_signal_protection_and_atmospheric_effects(original_signal, processed_signal): plt.figure(figsize=(12, 6)) plt.plot(original_signal, label="Wealth Signal", color='g', linestyle='--') plt.plot(processed_signal, label="Protected", color='r') plt.title("Atmosecure") plt.xlabel("Iterations (Time)") plt.ylabel("Signal Amplitude") plt.legend() plt.grid(True) plt.show() # Initialize the neural network for advanced signal processing and protection model = AdvancedWealthSignalNet() # Generate a wealth signal iterations = 100 wealth_signal = generate_wealth_signal(iterations) # Process and protect the wealth signal through the network protected_signal = process_and_protect_signal(wealth_signal, model) # Visualize the original and protected signals plot_signal_protection_and_atmospheric_effects(wealth_signal, protected_signal)