import torch import torch.nn as nn # Define a simple neural network to generate random frequencies class FrequencyMaskingNet(nn.Module): def __init__(self, input_size=1, hidden_size=64, output_size=1): super(FrequencyMaskingNet, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x # Function to create random frequencies to mask IP data def generate_frequencies(ip, model, iterations=100): # Convert the IP address (dummy) into tensor format ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) # Create a list to store frequency signals frequencies = [] # Iterate and generate frequencies using the neural network for _ in range(iterations): # Generate a masked frequency frequency = model(ip_tensor) frequencies.append(frequency.item()) return frequencies # Initialize the neural network model = FrequencyMaskingNet() # Example IP address to be masked (as a float for simplicity, convert if needed) ip_address = 192.168 # Example, could use a different encoding for real IPs # Generate pseudo-random frequencies to mask the IP masked_frequencies = generate_frequencies(ip_address, model) print(masked_frequencies) import torch import torch.nn as nn import matplotlib.pyplot as plt # Define the neural network for generating pseudo-random frequencies class FrequencyMaskingNet(nn.Module): def __init__(self, input_size=1, hidden_size=64, output_size=1): super(FrequencyMaskingNet, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x # Function to create random frequencies to mask IP data def generate_frequencies(ip, model, iterations=100): # Convert the IP address (dummy) into tensor format ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) # Create a list to store frequency signals frequencies = [] # Iterate and generate frequencies using the neural network for _ in range(iterations): # Generate a masked frequency frequency = model(ip_tensor) frequencies.append(frequency.item()) return frequencies # Function to visualize frequencies as a waveform def plot_frequencies(frequencies): plt.figure(figsize=(10, 4)) plt.plot(frequencies, color='b', label="Masked Frequencies") plt.title("Generated Frequency Waveform for IP Masking") plt.xlabel("Iterations") plt.ylabel("Frequency Amplitude") plt.grid(True) plt.legend() plt.show() # Initialize the neural network model = FrequencyMaskingNet() # Example IP address to be masked (as a float for simplicity) ip_address = 192.168 # Example, you can encode the IP better in practice # Generate pseudo-random frequencies to mask the IP masked_frequencies = generate_frequencies(ip_address, model) # Visualize the generated frequencies as a waveform plot_frequencies(masked_frequencies) import torch import torch.nn as nn import matplotlib.pyplot as plt import numpy as np # Define the neural network for generating pseudo-random frequencies class FrequencyMaskingNet(nn.Module): def __init__(self, input_size=1, hidden_size=64, output_size=1): super(FrequencyMaskingNet, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x # Function to create random frequencies to mask IP data def generate_frequencies(ip, model, iterations=100): ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) frequencies = [] for _ in range(iterations): frequency = model(ip_tensor) frequencies.append(frequency.item()) return frequencies # Function to generate a wealth signal that transmits in the direction of energy (e.g., linear increase) def generate_wealth_signal(iterations=100): # Simulate wealth signal as a sine wave with increasing amplitude (simulating directional energy) time = np.linspace(0, 10, iterations) wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time return wealth_signal # Function to visualize frequencies as a waveform def plot_frequencies(frequencies, wealth_signal): plt.figure(figsize=(10, 4)) plt.plot(frequencies, color='b', label="Masked Frequencies") plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal") plt.title("Generated Frequency Waveform with Wealth Signal") plt.xlabel("Iterations") plt.ylabel("Amplitude") plt.grid(True) plt.legend() plt.show() # Initialize the neural network model = FrequencyMaskingNet() # Example IP address to be masked (as a float for simplicity) ip_address = 192.168 # Generate pseudo-random frequencies to mask the IP masked_frequencies = generate_frequencies(ip_address, model) # Generate a wealth signal that grows in the direction of energy wealth_signal = generate_wealth_signal(len(masked_frequencies)) # Visualize the generated frequencies and wealth signal plot_frequencies(masked_frequencies, wealth_signal) import torch import torch.nn as nn import matplotlib.pyplot as plt import numpy as np # Define the neural network for generating pseudo-random frequencies class FrequencyMaskingNet(nn.Module): def __init__(self, input_size=1, hidden_size=64, output_size=1): super(FrequencyMaskingNet, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, output_size) self.relu = nn.ReLU() def forward(self, x): x = self.relu(self.fc1(x)) x = self.relu(self.fc2(x)) x = self.fc3(x) return x # Function to create random frequencies to mask IP data def generate_frequencies(ip, model, iterations=100): ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) frequencies = [] for _ in range(iterations): frequency = model(ip_tensor) frequencies.append(frequency.item()) return frequencies # Function to generate a wealth signal that transmits in the direction of energy def generate_wealth_signal(iterations=100): time = np.linspace(0, 10, iterations) wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time return wealth_signal # Function to generate a dense encryption waveform def generate_encryption_waveform(iterations=100): time = np.linspace(0, 10, iterations) # Dense waveform with higher frequency and random noise for encryption encryption_signal = np.sin(10 * np.pi * time) + 0.2 * np.random.randn(iterations) return encryption_signal # Function to visualize frequencies, wealth signal, and encryption def plot_frequencies(frequencies, wealth_signal, encryption_signal, target_reached_index): plt.figure(figsize=(10, 4)) # Plot masked frequencies plt.plot(frequencies, color='b', label="Masked Frequencies") # Plot wealth signal plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal") # Add encryption signal at target point plt.plot(range(target_reached_index, target_reached_index + len(encryption_signal)), encryption_signal, color='r', linestyle='-', label="Encrypted Wealth Data", linewidth=2) plt.title("SecureWealth Transmittor") plt.xlabel("Iterations") plt.ylabel("Amplitude") plt.grid(True) plt.legend() plt.show() # Initialize the neural network model = FrequencyMaskingNet() # Example IP address to be masked (as a float for simplicity) ip_address = 192.168 # Generate pseudo-random frequencies to mask the IP masked_frequencies = generate_frequencies(ip_address, model) # Generate a wealth signal that grows in the direction of energy wealth_signal = generate_wealth_signal(len(masked_frequencies)) # Determine where the wealth signal reaches its target (e.g., at its peak) target_reached_index = np.argmax(wealth_signal) # Generate dense encryption waveform once the wealth signal reaches its target encryption_signal = generate_encryption_waveform(len(masked_frequencies) - target_reached_index) # Visualize the generated frequencies, wealth signal, and encryption signal plot_frequencies(masked_frequencies, wealth_signal, encryption_signal, target_reached_index)