Image-to-Video
English
antitheft159 commited on
Commit
c57b527
1 Parent(s): fe0daf2

Delete securewealth_transmittor.py

Browse files
Files changed (1) hide show
  1. securewealth_transmittor.py +0 -257
securewealth_transmittor.py DELETED
@@ -1,257 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- # Define a simple neural network to generate random frequencies
5
- class FrequencyMaskingNet(nn.Module):
6
- def __init__(self, input_size=1, hidden_size=64, output_size=1):
7
- super(FrequencyMaskingNet, self).__init__()
8
-
9
- self.fc1 = nn.Linear(input_size, hidden_size)
10
- self.fc2 = nn.Linear(hidden_size, hidden_size)
11
- self.fc3 = nn.Linear(hidden_size, output_size)
12
- self.relu = nn.ReLU()
13
-
14
- def forward(self, x):
15
- x = self.relu(self.fc1(x))
16
- x = self.relu(self.fc2(x))
17
- x = self.fc3(x)
18
- return x
19
-
20
- # Function to create random frequencies to mask IP data
21
- def generate_frequencies(ip, model, iterations=100):
22
- # Convert the IP address (dummy) into tensor format
23
- ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
24
-
25
- # Create a list to store frequency signals
26
- frequencies = []
27
-
28
- # Iterate and generate frequencies using the neural network
29
- for _ in range(iterations):
30
- # Generate a masked frequency
31
- frequency = model(ip_tensor)
32
- frequencies.append(frequency.item())
33
-
34
- return frequencies
35
-
36
- # Initialize the neural network
37
- model = FrequencyMaskingNet()
38
-
39
- # Example IP address to be masked (as a float for simplicity, convert if needed)
40
- ip_address = 192.168 # Example, could use a different encoding for real IPs
41
-
42
- # Generate pseudo-random frequencies to mask the IP
43
- masked_frequencies = generate_frequencies(ip_address, model)
44
-
45
- print(masked_frequencies)
46
-
47
- import torch
48
- import torch.nn as nn
49
- import matplotlib.pyplot as plt
50
-
51
- # Define the neural network for generating pseudo-random frequencies
52
- class FrequencyMaskingNet(nn.Module):
53
- def __init__(self, input_size=1, hidden_size=64, output_size=1):
54
- super(FrequencyMaskingNet, self).__init__()
55
-
56
- self.fc1 = nn.Linear(input_size, hidden_size)
57
- self.fc2 = nn.Linear(hidden_size, hidden_size)
58
- self.fc3 = nn.Linear(hidden_size, output_size)
59
- self.relu = nn.ReLU()
60
-
61
- def forward(self, x):
62
- x = self.relu(self.fc1(x))
63
- x = self.relu(self.fc2(x))
64
- x = self.fc3(x)
65
- return x
66
-
67
- # Function to create random frequencies to mask IP data
68
- def generate_frequencies(ip, model, iterations=100):
69
- # Convert the IP address (dummy) into tensor format
70
- ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
71
-
72
- # Create a list to store frequency signals
73
- frequencies = []
74
-
75
- # Iterate and generate frequencies using the neural network
76
- for _ in range(iterations):
77
- # Generate a masked frequency
78
- frequency = model(ip_tensor)
79
- frequencies.append(frequency.item())
80
-
81
- return frequencies
82
-
83
- # Function to visualize frequencies as a waveform
84
- def plot_frequencies(frequencies):
85
- plt.figure(figsize=(10, 4))
86
- plt.plot(frequencies, color='b', label="Masked Frequencies")
87
- plt.title("Generated Frequency Waveform for IP Masking")
88
- plt.xlabel("Iterations")
89
- plt.ylabel("Frequency Amplitude")
90
- plt.grid(True)
91
- plt.legend()
92
- plt.show()
93
-
94
- # Initialize the neural network
95
- model = FrequencyMaskingNet()
96
-
97
- # Example IP address to be masked (as a float for simplicity)
98
- ip_address = 192.168 # Example, you can encode the IP better in practice
99
-
100
- # Generate pseudo-random frequencies to mask the IP
101
- masked_frequencies = generate_frequencies(ip_address, model)
102
-
103
- # Visualize the generated frequencies as a waveform
104
- plot_frequencies(masked_frequencies)
105
-
106
- import torch
107
- import torch.nn as nn
108
- import matplotlib.pyplot as plt
109
- import numpy as np
110
-
111
- # Define the neural network for generating pseudo-random frequencies
112
- class FrequencyMaskingNet(nn.Module):
113
- def __init__(self, input_size=1, hidden_size=64, output_size=1):
114
- super(FrequencyMaskingNet, self).__init__()
115
-
116
- self.fc1 = nn.Linear(input_size, hidden_size)
117
- self.fc2 = nn.Linear(hidden_size, hidden_size)
118
- self.fc3 = nn.Linear(hidden_size, output_size)
119
- self.relu = nn.ReLU()
120
-
121
- def forward(self, x):
122
- x = self.relu(self.fc1(x))
123
- x = self.relu(self.fc2(x))
124
- x = self.fc3(x)
125
- return x
126
-
127
- # Function to create random frequencies to mask IP data
128
- def generate_frequencies(ip, model, iterations=100):
129
- ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
130
- frequencies = []
131
-
132
- for _ in range(iterations):
133
- frequency = model(ip_tensor)
134
- frequencies.append(frequency.item())
135
-
136
- return frequencies
137
-
138
- # Function to generate a wealth signal that transmits in the direction of energy (e.g., linear increase)
139
- def generate_wealth_signal(iterations=100):
140
- # Simulate wealth signal as a sine wave with increasing amplitude (simulating directional energy)
141
- time = np.linspace(0, 10, iterations)
142
- wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
143
- return wealth_signal
144
-
145
- # Function to visualize frequencies as a waveform
146
- def plot_frequencies(frequencies, wealth_signal):
147
- plt.figure(figsize=(10, 4))
148
- plt.plot(frequencies, color='b', label="Masked Frequencies")
149
- plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
150
- plt.title("Generated Frequency Waveform with Wealth Signal")
151
- plt.xlabel("Iterations")
152
- plt.ylabel("Amplitude")
153
- plt.grid(True)
154
- plt.legend()
155
- plt.show()
156
-
157
- # Initialize the neural network
158
- model = FrequencyMaskingNet()
159
-
160
- # Example IP address to be masked (as a float for simplicity)
161
- ip_address = 192.168
162
-
163
- # Generate pseudo-random frequencies to mask the IP
164
- masked_frequencies = generate_frequencies(ip_address, model)
165
-
166
- # Generate a wealth signal that grows in the direction of energy
167
- wealth_signal = generate_wealth_signal(len(masked_frequencies))
168
-
169
- # Visualize the generated frequencies and wealth signal
170
- plot_frequencies(masked_frequencies, wealth_signal)
171
-
172
- import torch
173
- import torch.nn as nn
174
- import matplotlib.pyplot as plt
175
- import numpy as np
176
-
177
- # Define the neural network for generating pseudo-random frequencies
178
- class FrequencyMaskingNet(nn.Module):
179
- def __init__(self, input_size=1, hidden_size=64, output_size=1):
180
- super(FrequencyMaskingNet, self).__init__()
181
-
182
- self.fc1 = nn.Linear(input_size, hidden_size)
183
- self.fc2 = nn.Linear(hidden_size, hidden_size)
184
- self.fc3 = nn.Linear(hidden_size, output_size)
185
- self.relu = nn.ReLU()
186
-
187
- def forward(self, x):
188
- x = self.relu(self.fc1(x))
189
- x = self.relu(self.fc2(x))
190
- x = self.fc3(x)
191
- return x
192
-
193
- # Function to create random frequencies to mask IP data
194
- def generate_frequencies(ip, model, iterations=100):
195
- ip_tensor = torch.tensor([float(ip)], dtype=torch.float32)
196
- frequencies = []
197
-
198
- for _ in range(iterations):
199
- frequency = model(ip_tensor)
200
- frequencies.append(frequency.item())
201
-
202
- return frequencies
203
-
204
- # Function to generate a wealth signal that transmits in the direction of energy
205
- def generate_wealth_signal(iterations=100):
206
- time = np.linspace(0, 10, iterations)
207
- wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) # Amplitude increases over time
208
- return wealth_signal
209
-
210
- # Function to generate a dense encryption waveform
211
- def generate_encryption_waveform(iterations=100):
212
- time = np.linspace(0, 10, iterations)
213
- # Dense waveform with higher frequency and random noise for encryption
214
- encryption_signal = np.sin(10 * np.pi * time) + 0.2 * np.random.randn(iterations)
215
- return encryption_signal
216
-
217
- # Function to visualize frequencies, wealth signal, and encryption
218
- def plot_frequencies(frequencies, wealth_signal, encryption_signal, target_reached_index):
219
- plt.figure(figsize=(10, 4))
220
-
221
- # Plot masked frequencies
222
- plt.plot(frequencies, color='b', label="Masked Frequencies")
223
-
224
- # Plot wealth signal
225
- plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal")
226
-
227
- # Add encryption signal at target point
228
- plt.plot(range(target_reached_index, target_reached_index + len(encryption_signal)),
229
- encryption_signal, color='r', linestyle='-', label="Encrypted Wealth Data", linewidth=2)
230
-
231
- plt.title("SecureWealth Transmittor")
232
- plt.xlabel("Iterations")
233
- plt.ylabel("Amplitude")
234
- plt.grid(True)
235
- plt.legend()
236
- plt.show()
237
-
238
- # Initialize the neural network
239
- model = FrequencyMaskingNet()
240
-
241
- # Example IP address to be masked (as a float for simplicity)
242
- ip_address = 192.168
243
-
244
- # Generate pseudo-random frequencies to mask the IP
245
- masked_frequencies = generate_frequencies(ip_address, model)
246
-
247
- # Generate a wealth signal that grows in the direction of energy
248
- wealth_signal = generate_wealth_signal(len(masked_frequencies))
249
-
250
- # Determine where the wealth signal reaches its target (e.g., at its peak)
251
- target_reached_index = np.argmax(wealth_signal)
252
-
253
- # Generate dense encryption waveform once the wealth signal reaches its target
254
- encryption_signal = generate_encryption_waveform(len(masked_frequencies) - target_reached_index)
255
-
256
- # Visualize the generated frequencies, wealth signal, and encryption signal
257
- plot_frequencies(masked_frequencies, wealth_signal, encryption_signal, target_reached_index)