|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class FrequencyMaskingNet(nn.Module): |
|
def __init__(self, input_size=1, hidden_size=64, output_size=1): |
|
super(FrequencyMaskingNet, self).__init__() |
|
|
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.fc2 = nn.Linear(hidden_size, hidden_size) |
|
self.fc3 = nn.Linear(hidden_size, output_size) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
x = self.relu(self.fc1(x)) |
|
x = self.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
return x |
|
|
|
|
|
def generate_frequencies(ip, model, iterations=100): |
|
|
|
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) |
|
|
|
|
|
frequencies = [] |
|
|
|
|
|
for _ in range(iterations): |
|
|
|
frequency = model(ip_tensor) |
|
frequencies.append(frequency.item()) |
|
|
|
return frequencies |
|
|
|
|
|
model = FrequencyMaskingNet() |
|
|
|
|
|
ip_address = 192.168 |
|
|
|
|
|
masked_frequencies = generate_frequencies(ip_address, model) |
|
|
|
print(masked_frequencies) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
class FrequencyMaskingNet(nn.Module): |
|
def __init__(self, input_size=1, hidden_size=64, output_size=1): |
|
super(FrequencyMaskingNet, self).__init__() |
|
|
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.fc2 = nn.Linear(hidden_size, hidden_size) |
|
self.fc3 = nn.Linear(hidden_size, output_size) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
x = self.relu(self.fc1(x)) |
|
x = self.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
return x |
|
|
|
|
|
def generate_frequencies(ip, model, iterations=100): |
|
|
|
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) |
|
|
|
|
|
frequencies = [] |
|
|
|
|
|
for _ in range(iterations): |
|
|
|
frequency = model(ip_tensor) |
|
frequencies.append(frequency.item()) |
|
|
|
return frequencies |
|
|
|
|
|
def plot_frequencies(frequencies): |
|
plt.figure(figsize=(10, 4)) |
|
plt.plot(frequencies, color='b', label="Masked Frequencies") |
|
plt.title("Generated Frequency Waveform for IP Masking") |
|
plt.xlabel("Iterations") |
|
plt.ylabel("Frequency Amplitude") |
|
plt.grid(True) |
|
plt.legend() |
|
plt.show() |
|
|
|
|
|
model = FrequencyMaskingNet() |
|
|
|
|
|
ip_address = 192.168 |
|
|
|
|
|
masked_frequencies = generate_frequencies(ip_address, model) |
|
|
|
|
|
plot_frequencies(masked_frequencies) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
|
|
class FrequencyMaskingNet(nn.Module): |
|
def __init__(self, input_size=1, hidden_size=64, output_size=1): |
|
super(FrequencyMaskingNet, self).__init__() |
|
|
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.fc2 = nn.Linear(hidden_size, hidden_size) |
|
self.fc3 = nn.Linear(hidden_size, output_size) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
x = self.relu(self.fc1(x)) |
|
x = self.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
return x |
|
|
|
|
|
def generate_frequencies(ip, model, iterations=100): |
|
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) |
|
frequencies = [] |
|
|
|
for _ in range(iterations): |
|
frequency = model(ip_tensor) |
|
frequencies.append(frequency.item()) |
|
|
|
return frequencies |
|
|
|
|
|
def generate_wealth_signal(iterations=100): |
|
|
|
time = np.linspace(0, 10, iterations) |
|
wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) |
|
return wealth_signal |
|
|
|
|
|
def plot_frequencies(frequencies, wealth_signal): |
|
plt.figure(figsize=(10, 4)) |
|
plt.plot(frequencies, color='b', label="Masked Frequencies") |
|
plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal") |
|
plt.title("Generated Frequency Waveform with Wealth Signal") |
|
plt.xlabel("Iterations") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
plt.legend() |
|
plt.show() |
|
|
|
|
|
model = FrequencyMaskingNet() |
|
|
|
|
|
ip_address = 192.168 |
|
|
|
|
|
masked_frequencies = generate_frequencies(ip_address, model) |
|
|
|
|
|
wealth_signal = generate_wealth_signal(len(masked_frequencies)) |
|
|
|
|
|
plot_frequencies(masked_frequencies, wealth_signal) |
|
|
|
import torch |
|
import torch.nn as nn |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
|
|
class FrequencyMaskingNet(nn.Module): |
|
def __init__(self, input_size=1, hidden_size=64, output_size=1): |
|
super(FrequencyMaskingNet, self).__init__() |
|
|
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.fc2 = nn.Linear(hidden_size, hidden_size) |
|
self.fc3 = nn.Linear(hidden_size, output_size) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self, x): |
|
x = self.relu(self.fc1(x)) |
|
x = self.relu(self.fc2(x)) |
|
x = self.fc3(x) |
|
return x |
|
|
|
|
|
def generate_frequencies(ip, model, iterations=100): |
|
ip_tensor = torch.tensor([float(ip)], dtype=torch.float32) |
|
frequencies = [] |
|
|
|
for _ in range(iterations): |
|
frequency = model(ip_tensor) |
|
frequencies.append(frequency.item()) |
|
|
|
return frequencies |
|
|
|
|
|
def generate_wealth_signal(iterations=100): |
|
time = np.linspace(0, 10, iterations) |
|
wealth_signal = np.sin(2 * np.pi * time) * np.linspace(0.1, 1, iterations) |
|
return wealth_signal |
|
|
|
|
|
def generate_encryption_waveform(iterations=100): |
|
time = np.linspace(0, 10, iterations) |
|
|
|
encryption_signal = np.sin(10 * np.pi * time) + 0.2 * np.random.randn(iterations) |
|
return encryption_signal |
|
|
|
|
|
def plot_frequencies(frequencies, wealth_signal, encryption_signal, target_reached_index): |
|
plt.figure(figsize=(10, 4)) |
|
|
|
|
|
plt.plot(frequencies, color='b', label="Masked Frequencies") |
|
|
|
|
|
plt.plot(wealth_signal, color='g', linestyle='--', label="Wealth Signal") |
|
|
|
|
|
plt.plot(range(target_reached_index, target_reached_index + len(encryption_signal)), |
|
encryption_signal, color='r', linestyle='-', label="Encrypted Wealth Data", linewidth=2) |
|
|
|
plt.title("SecureWealth Transmittor") |
|
plt.xlabel("Iterations") |
|
plt.ylabel("Amplitude") |
|
plt.grid(True) |
|
plt.legend() |
|
plt.show() |
|
|
|
|
|
model = FrequencyMaskingNet() |
|
|
|
|
|
ip_address = 192.168 |
|
|
|
|
|
masked_frequencies = generate_frequencies(ip_address, model) |
|
|
|
|
|
wealth_signal = generate_wealth_signal(len(masked_frequencies)) |
|
|
|
|
|
target_reached_index = np.argmax(wealth_signal) |
|
|
|
|
|
encryption_signal = generate_encryption_waveform(len(masked_frequencies) - target_reached_index) |
|
|
|
|
|
plot_frequencies(masked_frequencies, wealth_signal, encryption_signal, target_reached_index) |