Text-to-3D
English
WealthAnchor / wealth_anchor.py
antitheft159's picture
Update wealth_anchor.py
8ce4233 verified
import numpy as np
import matplotlib.pyplot as plt
# Step 1: Generate brain frequencies
def generate_brain_frequency(freqs, t):
"""Generate brain frequency as a sum of sine waves to transmit wealth signals."""
signal = np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0)
return signal
# Time variables
sampling_rate = 1000 # Samples per second
T = 1.0 / sampling_rate # Sampling interval
t = np.linspace(0.0, 1.0, sampling_rate, endpoint=False) # Time array
# Wealth-related brainwave frequencies (arbitrary for simulation)
brain_frequencies = [8, 13, 30] # Frequencies representing wealth signals (theta, alpha, beta waves)
wealth_signal = generate_brain_frequency(brain_frequencies, t)
# Step 2: Transmit the wealth signals through wave patterns
def transmit_signal(signal, phase_shift):
"""Transmit wealth signal through a wave pattern with a phase shift."""
transmitted_signal = np.sin(2 * np.pi * signal + phase_shift)
return transmitted_signal
# Phase shift to create a unique wave pattern
phase_shift = np.pi / 4 # 45-degree phase shift
# Transmit wealth signal through the brain wave patterns
transmitted_wealth_signal = transmit_signal(wealth_signal, phase_shift)
# Step 3: Visualize the wealth signal and transmitted signal
plt.figure(figsize=(12, 6))
# Original brain-based wealth signal
plt.plot(t, wealth_signal, label='Original Brain Frequency Wealth Signal', color='blue', alpha=0.6)
# Transmitted wealth signal (wave pattern)
plt.plot(t, transmitted_wealth_signal, label='Transmitted Wealth Signal (Wave Pattern)', color='green', alpha=0.8)
plt.title('Brain Frequency Wealth Signal Transmission')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.legend()
plt.grid(True)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
# Step 1: Generate brain frequencies for wealth signals
def generate_brain_frequency(freqs, t):
"""Generate brain frequency as a sum of sine waves to transmit wealth signals."""
signal = np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0)
return signal
# Time variables
sampling_rate = 1000 # Samples per second
T = 1.0 / sampling_rate # Sampling interval
t = np.linspace(0.0, 1.0, sampling_rate, endpoint=False) # Time array
# Wealth-related brainwave frequencies
brain_frequencies = [8, 13, 30] # Theta, alpha, beta waves for wealth signals
wealth_signal = generate_brain_frequency(brain_frequencies, t)
# Step 2: Transmit the wealth signals through wave patterns
def transmit_signal(signal, phase_shift):
"""Transmit wealth signal through a wave pattern with a phase shift."""
transmitted_signal = np.sin(2 * np.pi * signal + phase_shift)
return transmitted_signal
# Apply phase shift for signal transmission
phase_shift = np.pi / 4 # 45-degree phase shift
# Transmit wealth signal through the brain wave patterns
transmitted_wealth_signal = transmit_signal(wealth_signal, phase_shift)
# Step 3: Create a storage mechanism for the transmitted wealth signal
def store_signal(signal, storage_factor):
"""Store transmitted wealth signal by damping its amplitude for storage."""
stored_signal = storage_factor * np.sin(2 * np.pi * signal)
return stored_signal
# Apply a storage factor to store the wealth signal
storage_factor = 0.8 # Simulating the attenuation in storage
stored_wealth_signal = store_signal(transmitted_wealth_signal, storage_factor)
# Step 4: Visualize the wealth signal, transmitted signal, and stored signal
plt.figure(figsize=(12, 6))
# Original wealth signal
plt.plot(t, wealth_signal, label='Original Brain Frequency Wealth Signal', color='blue', alpha=0.6)
# Transmitted wealth signal
plt.plot(t, transmitted_wealth_signal, label='Transmitted Wealth Signal (Wave Pattern)', color='green', alpha=0.8)
# Stored wealth signal
plt.plot(t, stored_wealth_signal, label='Stored Wealth Signal', color='red', alpha=0.6)
plt.title('Wealth Anchor')
plt.xlabel('Time [s]')
plt.ylabel('Amplitude')
plt.legend()
plt.grid(True)
plt.show()