# -*- coding: utf-8 -*- """HoloWealth Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1lObCKG_uGdcldMmKDoHnuSd34OUy4EmH """ import torch import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation waveform_size = 100 frequency = 0.5 amplitude = 5.0 direction_angle = np.pi / 4 total_time_hours = 24 time_steps = 240 time_interval = total_time_hours / time_steps x = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size) y = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size) X, Y = torch.meshgrid(x, y) def infinite_waveform(t): return amplitude * torch.cos(2 * np.pi * frequency * (X * torch.cos(direction) + Y * torch.sin(direction_angle)) + 2 * np.pi * t) wealth_data = torch.rand(waveform_size, waveform_size) * 100 total_wealth_energy = wealth_data ** 2 noise_mask = torch.randn(waveform_size, waveform_size) * 0.1 protected_wealth_energy = total_wealth_energy + noise_mask wealth_energy_per_time = protected_wealth_energy / time_steps fig, ax = plt.subplots(figsize=(8, 6)) signal_plot = ax.imshow(torch.zeros(waveform_size, waveform_size).numpy(), cmap='plasma', origin='lower') plt.colorbar(signal_plot, ax=ax, label='Signal Intensity') ax.set_title("HoloWealth") ax.set_xlabel('X Axis') ax.set_ylabel('Y Axis') def update(t): wave = infinite_waveform(t * time_interval) combined_signal = wave * wealth_energy_per_time signal_plot.set_data(combined_signal.numpy()) ax.set_title(f"Signal at Time Step: {t}/{time_steps}") ani = FuncAnimation(fig, update, frames=time_steps, interval=100, repeat=False) plt.show()