# -*- coding: utf-8 -*- """CS w/ EDWE Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1e3OBMKsTw9vFwJPjY2IGPPBya-R5Mf2z """ import torch import numpy as np import matplotlib.pyplot as plt # Parameters for the waveform and time waveform_size = 100 # Size of the 2D grid (waveform) frequency = 0.5 # Frequency of the wave amplitude = 5.0 # Amplitude of the wave direction_angle = np.pi / 4 # Direction in radians (e.g., pi/4 is 45 degrees) total_time_hours = 24 # Total timespan in hours time_steps = 240 # Number of time steps (e.g., 240 time steps for 24 hours means 10 steps per hour) # Time step interval (e.g., 10 time steps per hour) time_interval = total_time_hours / time_steps # Generate a 2D grid of coordinates x = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size) y = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size) X, Y = torch.meshgrid(x, y) # First Layer: Infinite directional waveform (repeating signal over time) def infinite_waveform(t): return amplitude * torch.cos(2 * np.pi * frequency * (X * torch.cos(torch.tensor(direction_angle)) + Y * torch.sin(torch.tensor(direction_angle))) + 2 * np.pi * t) # Second Layer: Wealth Data transformed into energy wealth_data = torch.rand(waveform_size, waveform_size) * 100 # Simulate random wealth values total_wealth_energy = wealth_data ** 2 # Convert wealth to energy # Third Layer: VPN protection (adding noise or encryption to wealth data) noise_mask = torch.randn(waveform_size, waveform_size) * 0.1 # Small random noise protected_wealth_energy = total_wealth_energy + noise_mask # Obscure wealth data with noise # Evenly distribute wealth energy over the 24-hour period (each time step receives a fraction of wealth) wealth_energy_per_time = protected_wealth_energy / time_steps # Simulate the combined signal over 24 hours (even distribution of wealth energy) infinite_signal = torch.zeros(waveform_size, waveform_size) for t in range(time_steps): wave = infinite_waveform(t * time_interval) # Scale time by interval infinite_signal += wave * wealth_energy_per_time # Evenly distribute wealth energy over time # Visualize the final infinite signal that combines all layers over the 24-hour period plt.figure(figsize=(8, 6)) plt.imshow(infinite_signal.numpy(), cmap='plasma', origin='lower') plt.title("24-Hour Combined Signal with Evenly Distributed Wealth Energy") plt.colorbar(label='Signal Intensity') plt.xlabel('X Axis') plt.ylabel('Y Axis') plt.show()