antitheft159 commited on
Commit
73ada57
1 Parent(s): d614b4d

Upload cs_w_edwe.py

Browse files
Files changed (1) hide show
  1. cs_w_edwe.py +58 -0
cs_w_edwe.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """CS w/ EDWE
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1e3OBMKsTw9vFwJPjY2IGPPBya-R5Mf2z
8
+ """
9
+
10
+ import torch
11
+ import numpy as np
12
+ import matplotlib.pyplot as plt
13
+
14
+ # Parameters for the waveform and time
15
+ waveform_size = 100 # Size of the 2D grid (waveform)
16
+ frequency = 0.5 # Frequency of the wave
17
+ amplitude = 5.0 # Amplitude of the wave
18
+ direction_angle = np.pi / 4 # Direction in radians (e.g., pi/4 is 45 degrees)
19
+ total_time_hours = 24 # Total timespan in hours
20
+ time_steps = 240 # Number of time steps (e.g., 240 time steps for 24 hours means 10 steps per hour)
21
+
22
+ # Time step interval (e.g., 10 time steps per hour)
23
+ time_interval = total_time_hours / time_steps
24
+
25
+ # Generate a 2D grid of coordinates
26
+ x = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size)
27
+ y = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size)
28
+ X, Y = torch.meshgrid(x, y)
29
+
30
+ # First Layer: Infinite directional waveform (repeating signal over time)
31
+ def infinite_waveform(t):
32
+ return amplitude * torch.cos(2 * np.pi * frequency * (X * torch.cos(torch.tensor(direction_angle)) + Y * torch.sin(torch.tensor(direction_angle))) + 2 * np.pi * t)
33
+
34
+ # Second Layer: Wealth Data transformed into energy
35
+ wealth_data = torch.rand(waveform_size, waveform_size) * 100 # Simulate random wealth values
36
+ total_wealth_energy = wealth_data ** 2 # Convert wealth to energy
37
+
38
+ # Third Layer: VPN protection (adding noise or encryption to wealth data)
39
+ noise_mask = torch.randn(waveform_size, waveform_size) * 0.1 # Small random noise
40
+ protected_wealth_energy = total_wealth_energy + noise_mask # Obscure wealth data with noise
41
+
42
+ # Evenly distribute wealth energy over the 24-hour period (each time step receives a fraction of wealth)
43
+ wealth_energy_per_time = protected_wealth_energy / time_steps
44
+
45
+ # Simulate the combined signal over 24 hours (even distribution of wealth energy)
46
+ infinite_signal = torch.zeros(waveform_size, waveform_size)
47
+ for t in range(time_steps):
48
+ wave = infinite_waveform(t * time_interval) # Scale time by interval
49
+ infinite_signal += wave * wealth_energy_per_time # Evenly distribute wealth energy over time
50
+
51
+ # Visualize the final infinite signal that combines all layers over the 24-hour period
52
+ plt.figure(figsize=(8, 6))
53
+ plt.imshow(infinite_signal.numpy(), cmap='plasma', origin='lower')
54
+ plt.title("24-Hour Combined Signal with Evenly Distributed Wealth Energy")
55
+ plt.colorbar(label='Signal Intensity')
56
+ plt.xlabel('X Axis')
57
+ plt.ylabel('Y Axis')
58
+ plt.show()