antitheft159
commited on
Commit
•
73ada57
1
Parent(s):
d614b4d
Upload cs_w_edwe.py
Browse files- cs_w_edwe.py +58 -0
cs_w_edwe.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""CS w/ EDWE
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1e3OBMKsTw9vFwJPjY2IGPPBya-R5Mf2z
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
|
14 |
+
# Parameters for the waveform and time
|
15 |
+
waveform_size = 100 # Size of the 2D grid (waveform)
|
16 |
+
frequency = 0.5 # Frequency of the wave
|
17 |
+
amplitude = 5.0 # Amplitude of the wave
|
18 |
+
direction_angle = np.pi / 4 # Direction in radians (e.g., pi/4 is 45 degrees)
|
19 |
+
total_time_hours = 24 # Total timespan in hours
|
20 |
+
time_steps = 240 # Number of time steps (e.g., 240 time steps for 24 hours means 10 steps per hour)
|
21 |
+
|
22 |
+
# Time step interval (e.g., 10 time steps per hour)
|
23 |
+
time_interval = total_time_hours / time_steps
|
24 |
+
|
25 |
+
# Generate a 2D grid of coordinates
|
26 |
+
x = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size)
|
27 |
+
y = torch.linspace(-waveform_size // 2, waveform_size // 2, waveform_size)
|
28 |
+
X, Y = torch.meshgrid(x, y)
|
29 |
+
|
30 |
+
# First Layer: Infinite directional waveform (repeating signal over time)
|
31 |
+
def infinite_waveform(t):
|
32 |
+
return amplitude * torch.cos(2 * np.pi * frequency * (X * torch.cos(torch.tensor(direction_angle)) + Y * torch.sin(torch.tensor(direction_angle))) + 2 * np.pi * t)
|
33 |
+
|
34 |
+
# Second Layer: Wealth Data transformed into energy
|
35 |
+
wealth_data = torch.rand(waveform_size, waveform_size) * 100 # Simulate random wealth values
|
36 |
+
total_wealth_energy = wealth_data ** 2 # Convert wealth to energy
|
37 |
+
|
38 |
+
# Third Layer: VPN protection (adding noise or encryption to wealth data)
|
39 |
+
noise_mask = torch.randn(waveform_size, waveform_size) * 0.1 # Small random noise
|
40 |
+
protected_wealth_energy = total_wealth_energy + noise_mask # Obscure wealth data with noise
|
41 |
+
|
42 |
+
# Evenly distribute wealth energy over the 24-hour period (each time step receives a fraction of wealth)
|
43 |
+
wealth_energy_per_time = protected_wealth_energy / time_steps
|
44 |
+
|
45 |
+
# Simulate the combined signal over 24 hours (even distribution of wealth energy)
|
46 |
+
infinite_signal = torch.zeros(waveform_size, waveform_size)
|
47 |
+
for t in range(time_steps):
|
48 |
+
wave = infinite_waveform(t * time_interval) # Scale time by interval
|
49 |
+
infinite_signal += wave * wealth_energy_per_time # Evenly distribute wealth energy over time
|
50 |
+
|
51 |
+
# Visualize the final infinite signal that combines all layers over the 24-hour period
|
52 |
+
plt.figure(figsize=(8, 6))
|
53 |
+
plt.imshow(infinite_signal.numpy(), cmap='plasma', origin='lower')
|
54 |
+
plt.title("24-Hour Combined Signal with Evenly Distributed Wealth Energy")
|
55 |
+
plt.colorbar(label='Signal Intensity')
|
56 |
+
plt.xlabel('X Axis')
|
57 |
+
plt.ylabel('Y Axis')
|
58 |
+
plt.show()
|