Upload config
Browse files- README.md +199 -0
- config.json +36 -0
- configuration_t5mimo.py +152 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"T5MIMOForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_t5mimo.T5MIMOConfig",
|
7 |
+
"AutoModel": "modeling_t5mimo.T5MIMOModel",
|
8 |
+
"AutoModelForSeq2SeqLM": "modeling_t5mimo.T5MIMOForConditionalGeneration"
|
9 |
+
},
|
10 |
+
"classifier_dropout": 0.0,
|
11 |
+
"d_ff": 1024,
|
12 |
+
"d_kv": 64,
|
13 |
+
"d_model": 256,
|
14 |
+
"decoder_start_token_id": 0,
|
15 |
+
"dense_act_fn": "relu",
|
16 |
+
"dropout_rate": 0.1,
|
17 |
+
"eos_token_id": 1,
|
18 |
+
"feed_forward_proj": "relu",
|
19 |
+
"initializer_factor": 0.05,
|
20 |
+
"is_encoder_decoder": true,
|
21 |
+
"is_gated_act": false,
|
22 |
+
"layer_norm_epsilon": 1e-06,
|
23 |
+
"model_type": "t5mimo",
|
24 |
+
"num_decoder_layers": 4,
|
25 |
+
"num_filters": 64,
|
26 |
+
"num_heads": 4,
|
27 |
+
"num_layers": 4,
|
28 |
+
"num_seqs": 3,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"relative_attention_max_distance": 128,
|
31 |
+
"relative_attention_num_buckets": 32,
|
32 |
+
"torch_dtype": "float32",
|
33 |
+
"transformers_version": "4.41.1",
|
34 |
+
"use_cache": true,
|
35 |
+
"vocab_size": 4096
|
36 |
+
}
|
configuration_t5mimo.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Mapping
|
2 |
+
from transformers.configuration_utils import PretrainedConfig
|
3 |
+
from transformers.onnx import OnnxSeq2SeqConfigWithPast
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class T5MIMOConfig(PretrainedConfig):
|
11 |
+
r"""
|
12 |
+
This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to
|
13 |
+
instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a
|
14 |
+
configuration with the defaults will yield a similar configuration to that of the T5
|
15 |
+
[google-t5/t5-small](https://huggingface.co/google-t5/t5-small) architecture.
|
16 |
+
|
17 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
18 |
+
documentation from [`PretrainedConfig`] for more information.
|
19 |
+
|
20 |
+
Arguments:
|
21 |
+
vocab_size (`int`, *optional*, defaults to 32128):
|
22 |
+
Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the
|
23 |
+
`inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`].
|
24 |
+
d_model (`int`, *optional*, defaults to 512):
|
25 |
+
Size of the encoder layers and the pooler layer.
|
26 |
+
d_kv (`int`, *optional*, defaults to 64):
|
27 |
+
Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
|
28 |
+
be defined as `num_heads * d_kv`.
|
29 |
+
d_ff (`int`, *optional*, defaults to 2048):
|
30 |
+
Size of the intermediate feed forward layer in each `T5Block`.
|
31 |
+
num_layers (`int`, *optional*, defaults to 6):
|
32 |
+
Number of hidden layers in the Transformer encoder.
|
33 |
+
num_decoder_layers (`int`, *optional*):
|
34 |
+
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
|
35 |
+
num_heads (`int`, *optional*, defaults to 8):
|
36 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
37 |
+
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
|
38 |
+
The number of buckets to use for each attention layer.
|
39 |
+
relative_attention_max_distance (`int`, *optional*, defaults to 128):
|
40 |
+
The maximum distance of the longer sequences for the bucket separation.
|
41 |
+
dropout_rate (`float`, *optional*, defaults to 0.1):
|
42 |
+
The ratio for all dropout layers.
|
43 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
44 |
+
The dropout ratio for classifier.
|
45 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
|
46 |
+
The epsilon used by the layer normalization layers.
|
47 |
+
initializer_factor (`float`, *optional*, defaults to 1):
|
48 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
49 |
+
testing).
|
50 |
+
feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
|
51 |
+
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the
|
52 |
+
`"gated-gelu"` feed forward projection. Original T5 uses `"relu"`.
|
53 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
55 |
+
"""
|
56 |
+
|
57 |
+
model_type = "t5mimo"
|
58 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
59 |
+
attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
|
60 |
+
|
61 |
+
def __init__(
|
62 |
+
self,
|
63 |
+
vocab_size=32128,
|
64 |
+
d_model=512,
|
65 |
+
d_kv=64,
|
66 |
+
d_ff=2048,
|
67 |
+
num_layers=6,
|
68 |
+
num_decoder_layers=None,
|
69 |
+
num_heads=8,
|
70 |
+
relative_attention_num_buckets=32,
|
71 |
+
relative_attention_max_distance=128,
|
72 |
+
dropout_rate=0.1,
|
73 |
+
layer_norm_epsilon=1e-6,
|
74 |
+
initializer_factor=1.0,
|
75 |
+
feed_forward_proj="relu",
|
76 |
+
is_encoder_decoder=True,
|
77 |
+
use_cache=True,
|
78 |
+
pad_token_id=0,
|
79 |
+
eos_token_id=1,
|
80 |
+
decoder_start_token_id = 0,
|
81 |
+
classifier_dropout=0.0,
|
82 |
+
num_seqs=3,
|
83 |
+
num_filters=64,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
self.vocab_size = vocab_size
|
87 |
+
self.d_model = d_model
|
88 |
+
self.d_kv = d_kv
|
89 |
+
self.d_ff = d_ff
|
90 |
+
self.num_layers = num_layers
|
91 |
+
self.num_decoder_layers = (
|
92 |
+
num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
93 |
+
) # default = symmetry
|
94 |
+
self.num_heads = num_heads
|
95 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
96 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
97 |
+
self.dropout_rate = dropout_rate
|
98 |
+
self.classifier_dropout = classifier_dropout
|
99 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
100 |
+
self.initializer_factor = initializer_factor
|
101 |
+
self.feed_forward_proj = feed_forward_proj
|
102 |
+
self.use_cache = use_cache
|
103 |
+
self.num_seqs = num_seqs
|
104 |
+
self.num_filters = num_filters
|
105 |
+
|
106 |
+
act_info = self.feed_forward_proj.split("-")
|
107 |
+
self.dense_act_fn = act_info[-1]
|
108 |
+
self.is_gated_act = act_info[0] == "gated"
|
109 |
+
|
110 |
+
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
|
111 |
+
raise ValueError(
|
112 |
+
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. "
|
113 |
+
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
|
114 |
+
"'gated-gelu' or 'relu'"
|
115 |
+
)
|
116 |
+
|
117 |
+
# for backwards compatibility
|
118 |
+
if feed_forward_proj == "gated-gelu":
|
119 |
+
self.dense_act_fn = "gelu_new"
|
120 |
+
|
121 |
+
super().__init__(
|
122 |
+
pad_token_id=pad_token_id,
|
123 |
+
eos_token_id=eos_token_id,
|
124 |
+
decoder_start_token_id=decoder_start_token_id,
|
125 |
+
is_encoder_decoder=is_encoder_decoder,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
class T5MIMOOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
131 |
+
@property
|
132 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
133 |
+
common_inputs = {
|
134 |
+
"input_ids": {0: "batch", 1: "encoder_sequence"},
|
135 |
+
"attention_mask": {0: "batch", 1: "encoder_sequence"},
|
136 |
+
}
|
137 |
+
if self.use_past:
|
138 |
+
common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence"
|
139 |
+
common_inputs["decoder_input_ids"] = {0: "batch"}
|
140 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
|
141 |
+
else:
|
142 |
+
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
143 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
|
144 |
+
|
145 |
+
if self.use_past:
|
146 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
147 |
+
|
148 |
+
return common_inputs
|
149 |
+
|
150 |
+
@property
|
151 |
+
def default_onnx_opset(self) -> int:
|
152 |
+
return 13
|