amitha commited on
Commit
3b5a7e5
1 Parent(s): 7317278

Upload LlavaBaichuanForCausalLM

Browse files
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
- license: unknown
3
- datasets:
4
- - LinkSoul/Chinese-LLaVA-Vision-Instructions
5
  language:
6
  - en
7
  - zh
 
8
  tags:
9
  - llava
10
  - vlm
 
 
11
  ---
12
 
13
  The bilingual English/Chinese Baichuan2-7B-Chat VLM trained via LORA for https://arxiv.org/abs/2406.11665.
 
1
  ---
 
 
 
2
  language:
3
  - en
4
  - zh
5
+ license: unknown
6
  tags:
7
  - llava
8
  - vlm
9
+ datasets:
10
+ - LinkSoul/Chinese-LLaVA-Vision-Instructions
11
  ---
12
 
13
  The bilingual English/Chinese Baichuan2-7B-Chat VLM trained via LORA for https://arxiv.org/abs/2406.11665.
clip_encoder.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch
16
+ import torch.nn as nn
17
+
18
+ from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
19
+
20
+
21
+ class CLIPVisionTower(nn.Module):
22
+ def __init__(self, vision_tower, args, delay_load=False):
23
+ super().__init__()
24
+
25
+ self.is_loaded = False
26
+
27
+ self.vision_tower_name = vision_tower
28
+ self.select_layer = args.mm_vision_select_layer
29
+ self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
30
+
31
+ if not delay_load:
32
+ self.load_model()
33
+ elif getattr(args, 'unfreeze_mm_vision_tower', False):
34
+ self.load_model()
35
+ else:
36
+ self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
37
+
38
+ def load_model(self, device_map=None):
39
+ if self.is_loaded:
40
+ print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
41
+ return
42
+
43
+ self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
44
+ self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
45
+ self.vision_tower.requires_grad_(False)
46
+
47
+ self.is_loaded = True
48
+
49
+ def feature_select(self, image_forward_outs):
50
+ image_features = image_forward_outs.hidden_states[self.select_layer]
51
+ if self.select_feature == 'patch':
52
+ image_features = image_features[:, 1:]
53
+ elif self.select_feature == 'cls_patch':
54
+ image_features = image_features
55
+ else:
56
+ raise ValueError(f'Unexpected select feature: {self.select_feature}')
57
+ return image_features
58
+
59
+ @torch.no_grad()
60
+ def forward(self, images):
61
+ if type(images) is list:
62
+ image_features = []
63
+ for image in images:
64
+ image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
65
+ image_feature = self.feature_select(image_forward_out).to(image.dtype)
66
+ image_features.append(image_feature)
67
+ else:
68
+ image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
69
+ image_features = self.feature_select(image_forward_outs).to(images.dtype)
70
+
71
+ return image_features
72
+
73
+ @property
74
+ def dummy_feature(self):
75
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
76
+
77
+ @property
78
+ def dtype(self):
79
+ return self.vision_tower.dtype
80
+
81
+ @property
82
+ def device(self):
83
+ return self.vision_tower.device
84
+
85
+ @property
86
+ def config(self):
87
+ if self.is_loaded:
88
+ return self.vision_tower.config
89
+ else:
90
+ return self.cfg_only
91
+
92
+ @property
93
+ def hidden_size(self):
94
+ return self.config.hidden_size
95
+
96
+ @property
97
+ def num_patches_per_side(self):
98
+ return self.config.image_size // self.config.patch_size
99
+
100
+ @property
101
+ def num_patches(self):
102
+ return (self.config.image_size // self.config.patch_size) ** 2
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "_name_or_path": "baichuan-inc/Baichuan2-7B-Chat",
4
+ "architectures": [
5
+ "LlavaBaichuanForCausalLM"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "llava_baichuan.LlavaBaichuanConfig",
9
+ "AutoModelForCausalLM": "baichuan-inc/Baichuan2-7B-Chat--modeling_baichuan.BaichuanForCausalLM",
10
+ "AutoModelForVisualQuestionAnswering": "llava_baichuan.LlavaBaichuanForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "eos_token_id": 2,
14
+ "freeze_mm_mlp_adapter": false,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 4096,
17
+ "image_aspect_ratio": "pad",
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 11008,
20
+ "max_position_embeddings": 4096,
21
+ "mm_hidden_size": 1024,
22
+ "mm_patch_merge_type": "flat",
23
+ "mm_projector_lr": 2e-05,
24
+ "mm_projector_type": "mlp2x_gelu",
25
+ "mm_use_im_patch_token": false,
26
+ "mm_use_im_start_end": false,
27
+ "mm_vision_select_feature": "patch",
28
+ "mm_vision_select_layer": -2,
29
+ "mm_vision_tower": "openai/clip-vit-large-patch14-336",
30
+ "model_max_length": 4096,
31
+ "model_type": "llava_baichuan",
32
+ "num_attention_heads": 32,
33
+ "num_hidden_layers": 32,
34
+ "pad_token_id": 0,
35
+ "rms_norm_eps": 1e-06,
36
+ "tie_word_embeddings": false,
37
+ "tokenizer_class": "BaichuanTokenizer",
38
+ "tokenizer_model_max_length": 2048,
39
+ "tokenizer_padding_side": "right",
40
+ "torch_dtype": "float16",
41
+ "transformers_version": "4.37.2",
42
+ "tune_mm_mlp_adapter": false,
43
+ "use_cache": true,
44
+ "use_mm_proj": true,
45
+ "vocab_size": 125696,
46
+ "z_loss_weight": 0
47
+ }
configuration_baichuan.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
+
3
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class BaichuanConfig(PretrainedConfig):
30
+ model_type = "baichuan"
31
+ keys_to_ignore_at_inference = ["past_key_values"]
32
+
33
+ def __init__(
34
+ self,
35
+ vocab_size=125696,
36
+ hidden_size=4096,
37
+ intermediate_size=11008,
38
+ num_hidden_layers=32,
39
+ num_attention_heads=32,
40
+ hidden_act="silu",
41
+ max_position_embeddings=4096,
42
+ initializer_range=0.02,
43
+ rms_norm_eps=1e-6,
44
+ use_cache=True,
45
+ pad_token_id=0,
46
+ bos_token_id=1,
47
+ eos_token_id=2,
48
+ tie_word_embeddings=False,
49
+ z_loss_weight=0,
50
+ **kwargs,
51
+ ):
52
+ self.vocab_size = vocab_size
53
+ self.max_position_embeddings = max_position_embeddings
54
+ self.hidden_size = hidden_size
55
+ self.intermediate_size = intermediate_size
56
+ self.num_hidden_layers = num_hidden_layers
57
+ self.num_attention_heads = num_attention_heads
58
+ self.hidden_act = hidden_act
59
+ self.initializer_range = initializer_range
60
+ self.rms_norm_eps = rms_norm_eps
61
+ self.use_cache = use_cache
62
+ self.z_loss_weight = z_loss_weight
63
+ super().__init__(
64
+ pad_token_id=pad_token_id,
65
+ bos_token_id=bos_token_id,
66
+ eos_token_id=eos_token_id,
67
+ tie_word_embeddings=tie_word_embeddings,
68
+ **kwargs,
69
+ )
constants.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
16
+ WORKER_HEART_BEAT_INTERVAL = 15
17
+
18
+ LOGDIR = "."
19
+
20
+ # Model Constants
21
+ IGNORE_INDEX = -100
22
+ IMAGE_TOKEN_INDEX = -200
23
+ DEFAULT_IMAGE_TOKEN = "<image>"
24
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
25
+ DEFAULT_IM_START_TOKEN = "<im_start>"
26
+ DEFAULT_IM_END_TOKEN = "<im_end>"
27
+ IMAGE_PLACEHOLDER = "<image-placeholder>"
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "assistant_token_id": 196,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "max_new_tokens": 2048,
7
+ "pad_token_id": 0,
8
+ "repetition_penalty": 1.05,
9
+ "temperature": 0.3,
10
+ "top_k": 5,
11
+ "top_p": 0.85,
12
+ "transformers_version": "4.37.2",
13
+ "user_token_id": 195
14
+ }
generation_utils_baichuan.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+ from queue import Queue
3
+
4
+ import torch
5
+
6
+
7
+ def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
8
+ def _parse_messages(messages, split_role="user"):
9
+ system, rounds = "", []
10
+ round = []
11
+ for i, message in enumerate(messages):
12
+ if message["role"] == "system":
13
+ assert i == 0
14
+ system = message["content"]
15
+ continue
16
+ if message["role"] == split_role and round:
17
+ rounds.append(round)
18
+ round = []
19
+ round.append(message)
20
+ if round:
21
+ rounds.append(round)
22
+ return system, rounds
23
+
24
+ max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
25
+ max_input_tokens = model.config.model_max_length - max_new_tokens
26
+ system, rounds = _parse_messages(messages, split_role="user")
27
+ system_tokens = tokenizer.encode(system)
28
+ max_history_tokens = max_input_tokens - len(system_tokens)
29
+
30
+ history_tokens = []
31
+ for round in rounds[::-1]:
32
+ round_tokens = []
33
+ for message in round:
34
+ if message["role"] == "user":
35
+ round_tokens.append(model.generation_config.user_token_id)
36
+ else:
37
+ round_tokens.append(model.generation_config.assistant_token_id)
38
+ round_tokens.extend(tokenizer.encode(message["content"]))
39
+ if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens:
40
+ history_tokens = round_tokens + history_tokens # concat left
41
+ if len(history_tokens) < max_history_tokens:
42
+ continue
43
+ break
44
+
45
+ input_tokens = system_tokens + history_tokens
46
+ if messages[-1]["role"] != "assistant":
47
+ input_tokens.append(model.generation_config.assistant_token_id)
48
+ input_tokens = input_tokens[-max_input_tokens:] # truncate left
49
+ return torch.LongTensor([input_tokens]).to(model.device)
50
+
51
+
52
+ class TextIterStreamer:
53
+ def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
54
+ self.tokenizer = tokenizer
55
+ self.skip_prompt = skip_prompt
56
+ self.skip_special_tokens = skip_special_tokens
57
+ self.tokens = []
58
+ self.text_queue = Queue()
59
+ self.next_tokens_are_prompt = True
60
+
61
+ def put(self, value):
62
+ if self.skip_prompt and self.next_tokens_are_prompt:
63
+ self.next_tokens_are_prompt = False
64
+ else:
65
+ if len(value.shape) > 1:
66
+ value = value[0]
67
+ self.tokens.extend(value.tolist())
68
+ self.text_queue.put(
69
+ self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
70
+
71
+ def end(self):
72
+ self.text_queue.put(None)
73
+
74
+ def __iter__(self):
75
+ return self
76
+
77
+ def __next__(self):
78
+ value = self.text_queue.get()
79
+ if value is None:
80
+ raise StopIteration()
81
+ else:
82
+ return value
83
+
llava_arch.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from abc import ABC, abstractmethod
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+
21
+ from .multimodal_encoder import build_vision_tower
22
+ from .multimodal_projector import build_vision_projector
23
+
24
+ from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
25
+
26
+ from .utils import get_anyres_image_grid_shape
27
+
28
+
29
+ class LlavaMetaModel:
30
+
31
+ def __init__(self, config):
32
+ super(LlavaMetaModel, self).__init__(config)
33
+
34
+ if hasattr(config, "mm_vision_tower"):
35
+ self.vision_tower = build_vision_tower(config, delay_load=True)
36
+ self.mm_projector = build_vision_projector(config)
37
+
38
+ if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
39
+ self.image_newline = nn.Parameter(
40
+ torch.empty(config.hidden_size, dtype=self.dtype)
41
+ )
42
+
43
+ def get_vision_tower(self):
44
+ vision_tower = getattr(self, 'vision_tower', None)
45
+ if type(vision_tower) is list:
46
+ vision_tower = vision_tower[0]
47
+ return vision_tower
48
+
49
+ def initialize_vision_modules(self, model_args, fsdp=None):
50
+ vision_tower = model_args.vision_tower
51
+ mm_vision_select_layer = model_args.mm_vision_select_layer
52
+ mm_vision_select_feature = model_args.mm_vision_select_feature
53
+ pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
54
+ mm_patch_merge_type = model_args.mm_patch_merge_type
55
+
56
+ self.config.mm_vision_tower = vision_tower
57
+
58
+ if self.get_vision_tower() is None:
59
+ vision_tower = build_vision_tower(model_args)
60
+
61
+ if fsdp is not None and len(fsdp) > 0:
62
+ self.vision_tower = [vision_tower]
63
+ else:
64
+ self.vision_tower = vision_tower
65
+ else:
66
+ if fsdp is not None and len(fsdp) > 0:
67
+ vision_tower = self.vision_tower[0]
68
+ else:
69
+ vision_tower = self.vision_tower
70
+ vision_tower.load_model()
71
+
72
+ self.config.use_mm_proj = True
73
+ self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
74
+ self.config.mm_hidden_size = vision_tower.hidden_size
75
+ self.config.mm_vision_select_layer = mm_vision_select_layer
76
+ self.config.mm_vision_select_feature = mm_vision_select_feature
77
+ self.config.mm_patch_merge_type = mm_patch_merge_type
78
+
79
+ if getattr(self, 'mm_projector', None) is None:
80
+ self.mm_projector = build_vision_projector(self.config)
81
+
82
+ if 'unpad' in mm_patch_merge_type:
83
+ embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
84
+ self.image_newline = nn.Parameter(
85
+ torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
86
+ )
87
+ else:
88
+ # In case it is frozen by LoRA
89
+ for p in self.mm_projector.parameters():
90
+ p.requires_grad = True
91
+
92
+ if pretrain_mm_mlp_adapter is not None:
93
+ mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
94
+ def get_w(weights, keyword):
95
+ return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
96
+
97
+ self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
98
+
99
+
100
+ def unpad_image(tensor, original_size):
101
+ """
102
+ Unpads a PyTorch tensor of a padded and resized image.
103
+
104
+ Args:
105
+ tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
106
+ original_size (tuple): The original size of the image (height, width).
107
+
108
+ Returns:
109
+ torch.Tensor: The unpadded image tensor.
110
+ """
111
+ original_width, original_height = original_size
112
+ current_height, current_width = tensor.shape[1:]
113
+
114
+ original_aspect_ratio = original_width / original_height
115
+ current_aspect_ratio = current_width / current_height
116
+
117
+ if original_aspect_ratio > current_aspect_ratio:
118
+ scale_factor = current_width / original_width
119
+ new_height = int(original_height * scale_factor)
120
+ padding = (current_height - new_height) // 2
121
+ unpadded_tensor = tensor[:, padding:current_height - padding, :]
122
+ else:
123
+ scale_factor = current_height / original_height
124
+ new_width = int(original_width * scale_factor)
125
+ padding = (current_width - new_width) // 2
126
+ unpadded_tensor = tensor[:, :, padding:current_width - padding]
127
+
128
+ return unpadded_tensor
129
+
130
+
131
+ class LlavaMetaForCausalLM(ABC):
132
+
133
+ @abstractmethod
134
+ def get_model(self):
135
+ pass
136
+
137
+ def get_vision_tower(self):
138
+ return self.get_model().get_vision_tower()
139
+
140
+ def encode_images(self, images):
141
+ image_features = self.get_model().get_vision_tower()(images)
142
+ image_features = self.get_model().mm_projector(image_features)
143
+ return image_features
144
+
145
+ def prepare_inputs_labels_for_multimodal(
146
+ self, input_ids, position_ids, attention_mask, past_key_values, labels,
147
+ images, image_sizes=None
148
+ ):
149
+ vision_tower = self.get_vision_tower()
150
+ if vision_tower is None or images is None or input_ids.shape[1] == 1:
151
+ return input_ids, position_ids, attention_mask, past_key_values, None, labels
152
+
153
+ if type(images) is list or images.ndim == 5:
154
+ if type(images) is list:
155
+ images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
156
+ concat_images = torch.cat([image for image in images], dim=0)
157
+ image_features = self.encode_images(concat_images)
158
+ split_sizes = [image.shape[0] for image in images]
159
+ image_features = torch.split(image_features, split_sizes, dim=0)
160
+ mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
161
+ image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
162
+ if mm_patch_merge_type == 'flat':
163
+ image_features = [x.flatten(0, 1) for x in image_features]
164
+ elif mm_patch_merge_type.startswith('spatial'):
165
+ new_image_features = []
166
+ for image_idx, image_feature in enumerate(image_features):
167
+ if image_feature.shape[0] > 1:
168
+ base_image_feature = image_feature[0]
169
+ image_feature = image_feature[1:]
170
+ height = width = self.get_vision_tower().num_patches_per_side
171
+ assert height * width == base_image_feature.shape[0]
172
+ if image_aspect_ratio == 'anyres':
173
+ num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
174
+ image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
175
+ else:
176
+ raise NotImplementedError
177
+ if 'unpad' in mm_patch_merge_type:
178
+ image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
179
+ image_feature = image_feature.flatten(1, 2).flatten(2, 3)
180
+ image_feature = unpad_image(image_feature, image_sizes[image_idx])
181
+ image_feature = torch.cat((
182
+ image_feature,
183
+ self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
184
+ ), dim=-1)
185
+ image_feature = image_feature.flatten(1, 2).transpose(0, 1)
186
+ else:
187
+ image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
188
+ image_feature = image_feature.flatten(0, 3)
189
+ image_feature = torch.cat((base_image_feature, image_feature), dim=0)
190
+ else:
191
+ image_feature = image_feature[0]
192
+ if 'unpad' in mm_patch_merge_type:
193
+ image_feature = torch.cat((
194
+ image_feature,
195
+ self.model.image_newline[None].to(image_feature.device)
196
+ ), dim=0)
197
+ new_image_features.append(image_feature)
198
+ image_features = new_image_features
199
+ else:
200
+ raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
201
+ else:
202
+ image_features = self.encode_images(images)
203
+
204
+ # TODO: image start / end is not implemented here to support pretraining.
205
+ if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
206
+ raise NotImplementedError
207
+
208
+ # Let's just add dummy tensors if they do not exist,
209
+ # it is a headache to deal with None all the time.
210
+ # But it is not ideal, and if you have a better idea,
211
+ # please open an issue / submit a PR, thanks.
212
+ _labels = labels
213
+ _position_ids = position_ids
214
+ _attention_mask = attention_mask
215
+ if attention_mask is None:
216
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
217
+ else:
218
+ attention_mask = attention_mask.bool()
219
+ if position_ids is None:
220
+ position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
221
+ if labels is None:
222
+ labels = torch.full_like(input_ids, IGNORE_INDEX)
223
+
224
+ # remove the padding using attention_mask -- FIXME
225
+ _input_ids = input_ids
226
+ input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
227
+ labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
228
+
229
+ new_input_embeds = []
230
+ new_labels = []
231
+ cur_image_idx = 0
232
+ for batch_idx, cur_input_ids in enumerate(input_ids):
233
+ num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
234
+ if num_images == 0:
235
+ cur_image_features = image_features[cur_image_idx]
236
+ cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
237
+ cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
238
+ new_input_embeds.append(cur_input_embeds)
239
+ new_labels.append(labels[batch_idx])
240
+ cur_image_idx += 1
241
+ continue
242
+
243
+ image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
244
+ cur_input_ids_noim = []
245
+ cur_labels = labels[batch_idx]
246
+ cur_labels_noim = []
247
+ for i in range(len(image_token_indices) - 1):
248
+ cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
249
+ cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
250
+ split_sizes = [x.shape[0] for x in cur_labels_noim]
251
+ cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
252
+ cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
253
+ cur_new_input_embeds = []
254
+ cur_new_labels = []
255
+
256
+ for i in range(num_images + 1):
257
+ cur_new_input_embeds.append(cur_input_embeds_no_im[i])
258
+ cur_new_labels.append(cur_labels_noim[i])
259
+ if i < num_images:
260
+ cur_image_features = image_features[cur_image_idx]
261
+ cur_image_idx += 1
262
+ cur_new_input_embeds.append(cur_image_features)
263
+ cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
264
+
265
+ cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
266
+
267
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds)
268
+ cur_new_labels = torch.cat(cur_new_labels)
269
+
270
+ new_input_embeds.append(cur_new_input_embeds)
271
+ new_labels.append(cur_new_labels)
272
+
273
+ # Truncate sequences to max length as image embeddings can make the sequence longer
274
+ tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
275
+ if tokenizer_model_max_length is not None:
276
+ new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
277
+ new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
278
+
279
+ # Combine them
280
+ max_len = max(x.shape[0] for x in new_input_embeds)
281
+ batch_size = len(new_input_embeds)
282
+
283
+ new_input_embeds_padded = []
284
+ new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
285
+ attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
286
+ position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
287
+
288
+ for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
289
+ cur_len = cur_new_embed.shape[0]
290
+ if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
291
+ new_input_embeds_padded.append(torch.cat((
292
+ torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
293
+ cur_new_embed
294
+ ), dim=0))
295
+ if cur_len > 0:
296
+ new_labels_padded[i, -cur_len:] = cur_new_labels
297
+ attention_mask[i, -cur_len:] = True
298
+ position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
299
+ else:
300
+ new_input_embeds_padded.append(torch.cat((
301
+ cur_new_embed,
302
+ torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
303
+ ), dim=0))
304
+ if cur_len > 0:
305
+ new_labels_padded[i, :cur_len] = cur_new_labels
306
+ attention_mask[i, :cur_len] = True
307
+ position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
308
+
309
+ new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
310
+
311
+ if _labels is None:
312
+ new_labels = None
313
+ else:
314
+ new_labels = new_labels_padded
315
+
316
+ if _attention_mask is None:
317
+ attention_mask = None
318
+ else:
319
+ attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
320
+
321
+ if _position_ids is None:
322
+ position_ids = None
323
+
324
+ return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
325
+
326
+ def initialize_vision_tokenizer(self, model_args, tokenizer):
327
+ if model_args.mm_use_im_patch_token:
328
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
329
+ self.resize_token_embeddings(len(tokenizer))
330
+
331
+ if model_args.mm_use_im_start_end:
332
+ num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
333
+ self.resize_token_embeddings(len(tokenizer))
334
+
335
+ if num_new_tokens > 0:
336
+ input_embeddings = self.get_input_embeddings().weight.data
337
+ output_embeddings = self.get_output_embeddings().weight.data
338
+
339
+ input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
340
+ dim=0, keepdim=True)
341
+ output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
342
+ dim=0, keepdim=True)
343
+
344
+ input_embeddings[-num_new_tokens:] = input_embeddings_avg
345
+ output_embeddings[-num_new_tokens:] = output_embeddings_avg
346
+
347
+ if model_args.tune_mm_mlp_adapter:
348
+ for p in self.get_input_embeddings().parameters():
349
+ p.requires_grad = True
350
+ for p in self.get_output_embeddings().parameters():
351
+ p.requires_grad = False
352
+
353
+ if model_args.pretrain_mm_mlp_adapter:
354
+ mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
355
+ embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
356
+ assert num_new_tokens == 2
357
+ if input_embeddings.shape == embed_tokens_weight.shape:
358
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
359
+ elif embed_tokens_weight.shape[0] == num_new_tokens:
360
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight
361
+ else:
362
+ raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
363
+ elif model_args.mm_use_im_patch_token:
364
+ if model_args.tune_mm_mlp_adapter:
365
+ for p in self.get_input_embeddings().parameters():
366
+ p.requires_grad = False
367
+ for p in self.get_output_embeddings().parameters():
368
+ p.requires_grad = False
llava_baichuan.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+ from transformers import AutoConfig, AutoModelForCausalLM
7
+
8
+ from transformers.modeling_outputs import CausalLMOutputWithPast
9
+ from transformers.generation.utils import GenerateOutput
10
+
11
+ from .llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
12
+
13
+ from .configuration_baichuan import BaichuanConfig
14
+ from .modeling_baichuan import BaichuanModel, BaichuanForCausalLM
15
+
16
+
17
+ class LlavaBaichuanConfig(BaichuanConfig):
18
+ model_type = "llava_baichuan"
19
+
20
+
21
+ class LlavaBaichuanModel(LlavaMetaModel, BaichuanModel):
22
+ config_class = LlavaBaichuanConfig
23
+
24
+ def __init__(self, config: BaichuanConfig):
25
+ super(LlavaBaichuanModel, self).__init__(config)
26
+
27
+
28
+ class LlavaBaichuanForCausalLM(BaichuanForCausalLM, LlavaMetaForCausalLM):
29
+ config_class = LlavaBaichuanConfig
30
+
31
+ def __init__(self, config):
32
+ super(BaichuanForCausalLM, self).__init__(config)
33
+ self.model = LlavaBaichuanModel(config)
34
+
35
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
36
+
37
+ # Initialize weights and apply final processing
38
+ self.post_init()
39
+
40
+ def get_model(self):
41
+ return self.model
42
+
43
+ def forward(
44
+ self,
45
+ input_ids: torch.LongTensor = None,
46
+ attention_mask: Optional[torch.Tensor] = None,
47
+ position_ids: Optional[torch.LongTensor] = None,
48
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
49
+ inputs_embeds: Optional[torch.FloatTensor] = None,
50
+ labels: Optional[torch.LongTensor] = None,
51
+ use_cache: Optional[bool] = None,
52
+ output_attentions: Optional[bool] = None,
53
+ output_hidden_states: Optional[bool] = None,
54
+ images: Optional[torch.FloatTensor] = None,
55
+ image_sizes: Optional[List[List[int]]] = None,
56
+ return_dict: Optional[bool] = None,
57
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
58
+
59
+ if inputs_embeds is None:
60
+ (
61
+ input_ids,
62
+ position_ids,
63
+ attention_mask,
64
+ past_key_values,
65
+ inputs_embeds,
66
+ labels
67
+ ) = self.prepare_inputs_labels_for_multimodal(
68
+ input_ids,
69
+ position_ids,
70
+ attention_mask,
71
+ past_key_values,
72
+ labels,
73
+ images,
74
+ image_sizes
75
+ )
76
+
77
+ return super().forward(
78
+ input_ids=input_ids,
79
+ attention_mask=attention_mask,
80
+ position_ids=position_ids,
81
+ past_key_values=past_key_values,
82
+ inputs_embeds=inputs_embeds,
83
+ labels=labels,
84
+ use_cache=use_cache,
85
+ output_attentions=output_attentions,
86
+ output_hidden_states=output_hidden_states,
87
+ return_dict=return_dict
88
+ )
89
+
90
+ @torch.no_grad()
91
+ def generate(
92
+ self,
93
+ inputs: Optional[torch.Tensor] = None,
94
+ images: Optional[torch.Tensor] = None,
95
+ image_sizes: Optional[torch.Tensor] = None,
96
+ **kwargs,
97
+ ) -> Union[GenerateOutput, torch.LongTensor]:
98
+ position_ids = kwargs.pop("position_ids", None)
99
+ attention_mask = kwargs.pop("attention_mask", None)
100
+ if "inputs_embeds" in kwargs:
101
+ raise NotImplementedError("`inputs_embeds` is not supported")
102
+
103
+ if images is not None:
104
+ (
105
+ inputs,
106
+ position_ids,
107
+ attention_mask,
108
+ _,
109
+ inputs_embeds,
110
+ _
111
+ ) = self.prepare_inputs_labels_for_multimodal(
112
+ inputs,
113
+ position_ids,
114
+ attention_mask,
115
+ None,
116
+ None,
117
+ images,
118
+ image_sizes=image_sizes
119
+ )
120
+ else:
121
+ inputs_embeds = self.get_model().embed_tokens(inputs)
122
+
123
+ return super().generate(
124
+ position_ids=position_ids,
125
+ attention_mask=attention_mask,
126
+ inputs_embeds=inputs_embeds,
127
+ **kwargs
128
+ )
129
+
130
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
131
+ inputs_embeds=None, **kwargs):
132
+ images = kwargs.pop("images", None)
133
+ image_sizes = kwargs.pop("image_sizes", None)
134
+ inputs = super().prepare_inputs_for_generation(
135
+ input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
136
+ )
137
+ if images is not None:
138
+ inputs['images'] = images
139
+ if image_sizes is not None:
140
+ inputs['image_sizes'] = image_sizes
141
+ return inputs
142
+
143
+
144
+ AutoConfig.register("llava_baichuan", LlavaBaichuanConfig)
145
+ AutoModelForCausalLM.register(LlavaBaichuanConfig, LlavaBaichuanForCausalLM)
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce5b9bcc0c6dd671489c224a35638bbae1822b044a93e5930b75ac7b536401e8
3
+ size 4987182728
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0e71e57b8d2beea8790ed7f85aa7db631429cf07b0a3a031d45787900e60ea1
3
+ size 4947404600
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c40cc8c0df35529db043be0dd613fd14d29f4f6384fb91737271b6964dc6a74
3
+ size 4993038136
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8272b194d2d359ec32949aaaf4ac6a9151eee10ecadf8dfea02b7c7d5576a43
3
+ size 1340396936
model.safetensors.index.json ADDED
@@ -0,0 +1,629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16267935744
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
23
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
24
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
25
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
26
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.11.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.12.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.13.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.14.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.15.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.16.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.17.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.18.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.19.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
93
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
94
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
95
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
96
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
97
+ "model.layers.2.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
98
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
99
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.20.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.21.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
116
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.22.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
122
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.23.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.24.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.25.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.26.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.27.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.28.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.29.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
170
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
171
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
172
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
173
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
174
+ "model.layers.3.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
175
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
176
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.30.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.31.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
191
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
192
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
193
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
194
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
195
+ "model.layers.4.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
196
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
197
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
199
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
200
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
201
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
202
+ "model.layers.5.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
203
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
204
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
205
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
206
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
207
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
208
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
209
+ "model.layers.6.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
210
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
211
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
212
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
213
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
214
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
215
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.7.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.8.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
226
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
227
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
228
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
229
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
230
+ "model.layers.9.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
231
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
232
+ "model.mm_projector.0.bias": "model-00004-of-00004.safetensors",
233
+ "model.mm_projector.0.weight": "model-00004-of-00004.safetensors",
234
+ "model.mm_projector.2.bias": "model-00004-of-00004.safetensors",
235
+ "model.mm_projector.2.weight": "model-00004-of-00004.safetensors",
236
+ "model.norm.weight": "model-00003-of-00004.safetensors",
237
+ "model.vision_tower.vision_tower.vision_model.embeddings.class_embedding": "model-00003-of-00004.safetensors",
238
+ "model.vision_tower.vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00003-of-00004.safetensors",
239
+ "model.vision_tower.vision_tower.vision_model.embeddings.position_embedding.weight": "model-00003-of-00004.safetensors",
240
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00003-of-00004.safetensors",
241
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00003-of-00004.safetensors",
242
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00003-of-00004.safetensors",
243
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00003-of-00004.safetensors",
244
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00003-of-00004.safetensors",
245
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00003-of-00004.safetensors",
246
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00003-of-00004.safetensors",
247
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00003-of-00004.safetensors",
248
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
249
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
251
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
253
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
255
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00003-of-00004.safetensors",
257
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00003-of-00004.safetensors",
258
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00003-of-00004.safetensors",
259
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00003-of-00004.safetensors",
260
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00003-of-00004.safetensors",
261
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00003-of-00004.safetensors",
262
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00003-of-00004.safetensors",
263
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00003-of-00004.safetensors",
264
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
265
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
266
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
267
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
268
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
269
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
270
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
271
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00003-of-00004.safetensors",
273
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00003-of-00004.safetensors",
274
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00003-of-00004.safetensors",
275
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00003-of-00004.safetensors",
276
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00003-of-00004.safetensors",
277
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00003-of-00004.safetensors",
278
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00003-of-00004.safetensors",
279
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00003-of-00004.safetensors",
280
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
281
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
282
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
283
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
285
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
286
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
287
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
288
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00003-of-00004.safetensors",
289
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00003-of-00004.safetensors",
290
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00003-of-00004.safetensors",
291
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00003-of-00004.safetensors",
292
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00003-of-00004.safetensors",
293
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00003-of-00004.safetensors",
294
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00003-of-00004.safetensors",
295
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00003-of-00004.safetensors",
296
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
297
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
298
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
299
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
300
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
301
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
302
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
303
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
304
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00003-of-00004.safetensors",
305
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00003-of-00004.safetensors",
306
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00003-of-00004.safetensors",
307
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00003-of-00004.safetensors",
308
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00003-of-00004.safetensors",
309
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00003-of-00004.safetensors",
310
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00003-of-00004.safetensors",
311
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00003-of-00004.safetensors",
312
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
313
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
314
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
315
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
317
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
318
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
319
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
320
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00003-of-00004.safetensors",
321
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00003-of-00004.safetensors",
322
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00003-of-00004.safetensors",
323
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00003-of-00004.safetensors",
324
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00003-of-00004.safetensors",
325
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00003-of-00004.safetensors",
326
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00003-of-00004.safetensors",
327
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00003-of-00004.safetensors",
328
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
329
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
330
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
331
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
332
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
333
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
334
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
335
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
336
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00003-of-00004.safetensors",
337
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00003-of-00004.safetensors",
338
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00003-of-00004.safetensors",
339
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00003-of-00004.safetensors",
340
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00003-of-00004.safetensors",
341
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00003-of-00004.safetensors",
342
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00003-of-00004.safetensors",
343
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00003-of-00004.safetensors",
344
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
345
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
346
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
347
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
348
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
349
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
350
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
351
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
352
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00003-of-00004.safetensors",
353
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00003-of-00004.safetensors",
354
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00003-of-00004.safetensors",
355
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00003-of-00004.safetensors",
356
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00003-of-00004.safetensors",
357
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00003-of-00004.safetensors",
358
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00003-of-00004.safetensors",
359
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00003-of-00004.safetensors",
360
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
361
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
362
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
363
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
364
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
365
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
366
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
367
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
368
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00003-of-00004.safetensors",
369
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00003-of-00004.safetensors",
370
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00003-of-00004.safetensors",
371
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00003-of-00004.safetensors",
372
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00003-of-00004.safetensors",
373
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00003-of-00004.safetensors",
374
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00003-of-00004.safetensors",
375
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00003-of-00004.safetensors",
376
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
377
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
378
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
379
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
380
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
381
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
382
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
383
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
384
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00003-of-00004.safetensors",
385
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00003-of-00004.safetensors",
386
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00003-of-00004.safetensors",
387
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00003-of-00004.safetensors",
388
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00003-of-00004.safetensors",
389
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00003-of-00004.safetensors",
390
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00003-of-00004.safetensors",
391
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00003-of-00004.safetensors",
392
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
393
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
394
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
395
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
396
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
397
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
398
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
399
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
400
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00003-of-00004.safetensors",
401
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00003-of-00004.safetensors",
402
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
403
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
404
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00003-of-00004.safetensors",
405
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00003-of-00004.safetensors",
406
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
407
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
408
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
409
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
410
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
411
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
412
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
413
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
414
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
415
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
416
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
417
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
418
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
419
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
420
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
421
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
422
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
423
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
424
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
425
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
426
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
427
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
428
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
429
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
430
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
431
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
432
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00003-of-00004.safetensors",
433
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00003-of-00004.safetensors",
434
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00003-of-00004.safetensors",
435
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00003-of-00004.safetensors",
436
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00003-of-00004.safetensors",
437
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00003-of-00004.safetensors",
438
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00003-of-00004.safetensors",
439
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00003-of-00004.safetensors",
440
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
441
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
442
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
443
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
444
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
445
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
446
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
447
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
448
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
449
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
450
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
451
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
452
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
453
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
454
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
455
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
456
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
457
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
458
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
459
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
460
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
461
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
462
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
463
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
464
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
465
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
466
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
467
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
468
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
469
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
470
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
471
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
472
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
473
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
474
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
475
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
476
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
477
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
478
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
479
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
480
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
481
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
482
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
483
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
484
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
485
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
486
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
487
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
488
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
489
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
490
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
491
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
492
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
493
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
494
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
495
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
496
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
497
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
498
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
499
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
500
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
501
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
502
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
503
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
504
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
505
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
506
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
507
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
508
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
509
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
510
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
511
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
512
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00003-of-00004.safetensors",
513
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00003-of-00004.safetensors",
514
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00003-of-00004.safetensors",
515
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00003-of-00004.safetensors",
516
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00003-of-00004.safetensors",
517
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00003-of-00004.safetensors",
518
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00003-of-00004.safetensors",
519
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00003-of-00004.safetensors",
520
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
521
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
522
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
523
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
524
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
525
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
526
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
527
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
528
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00003-of-00004.safetensors",
529
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00003-of-00004.safetensors",
530
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00003-of-00004.safetensors",
531
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00003-of-00004.safetensors",
532
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00003-of-00004.safetensors",
533
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00003-of-00004.safetensors",
534
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00003-of-00004.safetensors",
535
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00003-of-00004.safetensors",
536
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
537
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
538
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
539
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
540
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
541
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
542
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
543
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
544
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00003-of-00004.safetensors",
545
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00003-of-00004.safetensors",
546
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00003-of-00004.safetensors",
547
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00003-of-00004.safetensors",
548
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00003-of-00004.safetensors",
549
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00003-of-00004.safetensors",
550
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00003-of-00004.safetensors",
551
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00003-of-00004.safetensors",
552
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
553
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
554
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
555
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
556
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
557
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
558
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
559
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
560
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00003-of-00004.safetensors",
561
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00003-of-00004.safetensors",
562
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00003-of-00004.safetensors",
563
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00003-of-00004.safetensors",
564
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00003-of-00004.safetensors",
565
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00003-of-00004.safetensors",
566
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00003-of-00004.safetensors",
567
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00003-of-00004.safetensors",
568
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
569
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
570
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
571
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
572
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
573
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
574
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
575
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
576
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00003-of-00004.safetensors",
577
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00003-of-00004.safetensors",
578
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00003-of-00004.safetensors",
579
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00003-of-00004.safetensors",
580
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00003-of-00004.safetensors",
581
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00003-of-00004.safetensors",
582
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00003-of-00004.safetensors",
583
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00003-of-00004.safetensors",
584
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
585
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
586
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
587
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
588
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
589
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
590
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
591
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
592
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00003-of-00004.safetensors",
593
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00003-of-00004.safetensors",
594
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00003-of-00004.safetensors",
595
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00003-of-00004.safetensors",
596
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00003-of-00004.safetensors",
597
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00003-of-00004.safetensors",
598
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00003-of-00004.safetensors",
599
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00003-of-00004.safetensors",
600
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
601
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
602
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
603
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
604
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
605
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
606
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
607
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
608
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00003-of-00004.safetensors",
609
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00003-of-00004.safetensors",
610
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00003-of-00004.safetensors",
611
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00003-of-00004.safetensors",
612
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00003-of-00004.safetensors",
613
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00003-of-00004.safetensors",
614
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00003-of-00004.safetensors",
615
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00003-of-00004.safetensors",
616
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
617
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
618
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00003-of-00004.safetensors",
619
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00003-of-00004.safetensors",
620
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
621
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
622
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
623
+ "model.vision_tower.vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
624
+ "model.vision_tower.vision_tower.vision_model.post_layernorm.bias": "model-00004-of-00004.safetensors",
625
+ "model.vision_tower.vision_tower.vision_model.post_layernorm.weight": "model-00004-of-00004.safetensors",
626
+ "model.vision_tower.vision_tower.vision_model.pre_layrnorm.bias": "model-00003-of-00004.safetensors",
627
+ "model.vision_tower.vision_tower.vision_model.pre_layrnorm.weight": "model-00003-of-00004.safetensors"
628
+ }
629
+ }
modeling_baichuan.py ADDED
@@ -0,0 +1,785 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
+
3
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+
23
+ from .configuration_baichuan import BaichuanConfig
24
+ from .generation_utils_baichuan import build_chat_input, TextIterStreamer
25
+
26
+ import math
27
+ from typing import List, Optional, Tuple, Union
28
+ from threading import Thread
29
+
30
+ import torch
31
+ import torch.utils.checkpoint
32
+ from torch import nn
33
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
34
+ from torch.nn import functional as F
35
+ from transformers import PreTrainedModel, PretrainedConfig
36
+ from transformers.activations import ACT2FN
37
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
38
+ from transformers.generation.utils import GenerationConfig
39
+ from transformers.utils import logging, ContextManagers
40
+
41
+ import os
42
+ from contextlib import contextmanager
43
+ logger = logging.get_logger(__name__)
44
+
45
+ try:
46
+ from xformers import ops as xops
47
+ except ImportError:
48
+ xops = None
49
+ logger.warning(
50
+ "Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
51
+ )
52
+
53
+
54
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
55
+ def _make_causal_mask(
56
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
57
+ ):
58
+ """
59
+ Make causal mask used for bi-directional self-attention.
60
+ """
61
+ bsz, tgt_len = input_ids_shape
62
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
63
+ mask_cond = torch.arange(mask.size(-1), device=device)
64
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
65
+ mask = mask.to(dtype)
66
+
67
+ if past_key_values_length > 0:
68
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
69
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
70
+
71
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
72
+ """
73
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
74
+ """
75
+ if len(mask.size()) == 3:
76
+ bsz, src_len, _ = mask.size()
77
+ tgt_len = tgt_len if tgt_len is not None else src_len
78
+ expanded_mask = mask[:,None,:,:].expand(bsz, 1, tgt_len, src_len).to(dtype)
79
+ else:
80
+ bsz, src_len = mask.size()
81
+ tgt_len = tgt_len if tgt_len is not None else src_len
82
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
83
+
84
+ inverted_mask = 1.0 - expanded_mask
85
+
86
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
87
+
88
+
89
+ class RMSNorm(nn.Module):
90
+ def __init__(self, hidden_size, eps=1e-6):
91
+ """
92
+ RMSNorm is equivalent to T5LayerNorm
93
+ """
94
+ super().__init__()
95
+ self.weight = nn.Parameter(torch.ones(hidden_size))
96
+ self.variance_epsilon = eps
97
+
98
+ def forward(self, hidden_states):
99
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
100
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
101
+
102
+ # convert into half-precision if necessary
103
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
104
+ hidden_states = hidden_states.to(self.weight.dtype)
105
+
106
+ return self.weight * hidden_states
107
+
108
+
109
+ class RotaryEmbedding(torch.nn.Module):
110
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
111
+ super().__init__()
112
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
113
+ self.max_seq_len_cached = max_position_embeddings
114
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
115
+ freqs = torch.outer(t, self.inv_freq)
116
+ emb = torch.cat((freqs, freqs), dim=-1)
117
+ self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32)
118
+ self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32)
119
+ def forward(self, x, seq_len=None):
120
+ # x: [bs, num_attention_heads, seq_len, head_size]
121
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
122
+ if seq_len > self.max_seq_len_cached:
123
+ self.max_seq_len_cached = seq_len
124
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
125
+ freqs = torch.outer(t, self.inv_freq)
126
+ emb = torch.cat((freqs, freqs), dim=-1)
127
+ self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device)
128
+ self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device)
129
+ elif self.cos_cached.device != x.device:
130
+ self.cos_cached = self.cos_cached.to(x.device)
131
+ self.sin_cached = self.sin_cached.to(x.device)
132
+ return (
133
+ self.cos_cached[:, :, :seq_len, ...],
134
+ self.sin_cached[:, :, :seq_len, ...],
135
+ )
136
+
137
+
138
+ def rotate_half(x):
139
+ """Rotates half the hidden dims of the input."""
140
+ x1 = x[..., : x.shape[-1] // 2]
141
+ x2 = x[..., x.shape[-1] // 2:]
142
+ return torch.cat((-x2, x1), dim=-1)
143
+
144
+
145
+ def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids):
146
+ cos = cos_.squeeze(1).squeeze(0) # [seq_len, dim]
147
+ sin = sin_.squeeze(1).squeeze(0) # [seq_len, dim]
148
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
149
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
150
+ q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
151
+ k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
152
+ return q_embed.to(q.dtype), k_embed.to(k.dtype)
153
+
154
+
155
+ class MLP(nn.Module):
156
+ def __init__(
157
+ self,
158
+ hidden_size: int,
159
+ intermediate_size: int,
160
+ hidden_act: str,
161
+ ):
162
+ super().__init__()
163
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
164
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
165
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
166
+ self.act_fn = ACT2FN[hidden_act]
167
+
168
+ def forward(self, x):
169
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
170
+
171
+
172
+ class Attention(nn.Module):
173
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
174
+ def __init__(self, config: BaichuanConfig):
175
+ super().__init__()
176
+ self.config = config
177
+ self.hidden_size = config.hidden_size
178
+ self.num_heads = config.num_attention_heads
179
+ self.head_dim = self.hidden_size // self.num_heads
180
+ self.max_position_embeddings = config.max_position_embeddings
181
+
182
+ if (self.head_dim * self.num_heads) != self.hidden_size:
183
+ raise ValueError(
184
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
185
+ f" and `num_heads`: {self.num_heads})."
186
+ )
187
+ self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
188
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
189
+ self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
190
+
191
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
192
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
193
+
194
+ def forward(
195
+ self,
196
+ hidden_states: torch.Tensor,
197
+ attention_mask: Optional[torch.Tensor] = None,
198
+ position_ids: Optional[torch.LongTensor] = None,
199
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
200
+ output_attentions: bool = False,
201
+ use_cache: bool = False,
202
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
203
+ bsz, q_len, _ = hidden_states.size()
204
+
205
+ proj = self.W_pack(hidden_states)
206
+ proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
207
+ query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
208
+ key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
209
+ value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
210
+
211
+ kv_seq_len = key_states.shape[-2]
212
+ if past_key_value is not None:
213
+ kv_seq_len += past_key_value[0].shape[-2]
214
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
215
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
216
+ # [bsz, nh, t, hd]
217
+
218
+ if past_key_value is not None:
219
+ # reuse k, v, self_attention
220
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
221
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
222
+
223
+ past_key_value = (key_states, value_states) if use_cache else None
224
+ if xops is not None and self.training:
225
+ attn_weights = None
226
+ query_states = query_states.transpose(1, 2)
227
+ key_states = key_states.transpose(1, 2)
228
+ value_states = value_states.transpose(1, 2)
229
+ attn_output = xops.memory_efficient_attention(
230
+ query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
231
+ )
232
+ else:
233
+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
234
+ attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
235
+ attn_output = attn_output.transpose(1, 2)
236
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
237
+ attn_output = self.o_proj(attn_output)
238
+
239
+ if not output_attentions:
240
+ attn_weights = None
241
+
242
+ return attn_output, attn_weights, past_key_value
243
+
244
+
245
+ class DecoderLayer(nn.Module):
246
+ def __init__(self, config: BaichuanConfig):
247
+ super().__init__()
248
+ self.hidden_size = config.hidden_size
249
+ self.self_attn = Attention(config=config)
250
+ self.mlp = MLP(
251
+ hidden_size=self.hidden_size,
252
+ intermediate_size=config.intermediate_size,
253
+ hidden_act=config.hidden_act,
254
+ )
255
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
256
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
257
+
258
+ def forward(
259
+ self,
260
+ hidden_states: torch.Tensor,
261
+ attention_mask: Optional[torch.Tensor] = None,
262
+ position_ids: Optional[torch.LongTensor] = None,
263
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
264
+ output_attentions: Optional[bool] = False,
265
+ use_cache: Optional[bool] = False,
266
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
267
+
268
+ residual = hidden_states
269
+
270
+ hidden_states = self.input_layernorm(hidden_states)
271
+
272
+ # Self Attention
273
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
274
+ hidden_states=hidden_states,
275
+ attention_mask=attention_mask,
276
+ position_ids=position_ids,
277
+ past_key_value=past_key_value,
278
+ output_attentions=output_attentions,
279
+ use_cache=use_cache,
280
+ )
281
+ hidden_states = residual + hidden_states
282
+
283
+ # Fully Connected
284
+ residual = hidden_states
285
+ hidden_states = self.post_attention_layernorm(hidden_states)
286
+ hidden_states = self.mlp(hidden_states)
287
+ hidden_states = residual + hidden_states
288
+
289
+ outputs = (hidden_states,)
290
+
291
+ if output_attentions:
292
+ outputs += (self_attn_weights,)
293
+
294
+ if use_cache:
295
+ outputs += (present_key_value,)
296
+
297
+ return outputs
298
+
299
+
300
+ class BaichuanPreTrainedModel(PreTrainedModel):
301
+ config_class = BaichuanConfig
302
+ base_model_prefix = "model"
303
+ supports_gradient_checkpointing = True
304
+ _no_split_modules = ["DecoderLayer"]
305
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
306
+
307
+ def _init_weights(self, module):
308
+ std = self.config.initializer_range
309
+ if isinstance(module, nn.Linear):
310
+ module.weight.data.normal_(mean=0.0, std=std)
311
+ if module.bias is not None:
312
+ module.bias.data.zero_()
313
+ elif isinstance(module, nn.Embedding):
314
+ module.weight.data.normal_(mean=0.0, std=std)
315
+ if module.padding_idx is not None:
316
+ module.weight.data[module.padding_idx].zero_()
317
+
318
+ def _set_gradient_checkpointing(self, module, value=False):
319
+ if isinstance(module, BaichuanModel):
320
+ module.gradient_checkpointing = value
321
+
322
+
323
+ class BaichuanModel(BaichuanPreTrainedModel):
324
+ def __init__(self, config: BaichuanConfig):
325
+ super().__init__(config)
326
+ self.padding_idx = config.pad_token_id
327
+ self.vocab_size = config.vocab_size
328
+
329
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
330
+ self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
331
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
332
+
333
+ self.gradient_checkpointing = False
334
+ # Initialize weights and apply final processing
335
+ self.post_init()
336
+
337
+ def get_input_embeddings(self):
338
+ return self.embed_tokens
339
+
340
+ def set_input_embeddings(self, value):
341
+ self.embed_tokens = value
342
+
343
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
344
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
345
+ # create causal mask
346
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
347
+ combined_attention_mask = None
348
+ if input_shape[-1] > 1:
349
+ combined_attention_mask = _make_causal_mask(
350
+ input_shape,
351
+ inputs_embeds.dtype,
352
+ device=inputs_embeds.device,
353
+ past_key_values_length=past_key_values_length,
354
+ )
355
+
356
+ if attention_mask is not None:
357
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
358
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
359
+ inputs_embeds.device
360
+ )
361
+ combined_attention_mask = (
362
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
363
+ )
364
+
365
+ return combined_attention_mask
366
+
367
+ def forward(
368
+ self,
369
+ input_ids: torch.LongTensor = None,
370
+ attention_mask: Optional[torch.Tensor] = None,
371
+ position_ids: Optional[torch.LongTensor] = None,
372
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
373
+ inputs_embeds: Optional[torch.FloatTensor] = None,
374
+ use_cache: Optional[bool] = None,
375
+ output_attentions: Optional[bool] = None,
376
+ output_hidden_states: Optional[bool] = None,
377
+ return_dict: Optional[bool] = None,
378
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
379
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
380
+ output_hidden_states = (
381
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
382
+ )
383
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
384
+
385
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
386
+
387
+ # retrieve input_ids and inputs_embeds
388
+ if input_ids is not None and inputs_embeds is not None:
389
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
390
+ elif input_ids is not None:
391
+ batch_size, seq_length = input_ids.shape
392
+ elif inputs_embeds is not None:
393
+ batch_size, seq_length, _ = inputs_embeds.shape
394
+ else:
395
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
396
+
397
+ seq_length_with_past = seq_length
398
+ past_key_values_length = 0
399
+
400
+ if past_key_values is not None:
401
+ past_key_values_length = past_key_values[0][0].shape[2]
402
+ seq_length_with_past = seq_length_with_past + past_key_values_length
403
+
404
+ if position_ids is None:
405
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
406
+ position_ids = torch.arange(
407
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
408
+ )
409
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
410
+ else:
411
+ position_ids = position_ids.view(-1, seq_length).long()
412
+
413
+ if inputs_embeds is None:
414
+ inputs_embeds = self.embed_tokens(input_ids)
415
+ # embed positions
416
+ if attention_mask is None:
417
+ attention_mask = torch.ones(
418
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
419
+ )
420
+ attention_mask = self._prepare_decoder_attention_mask(
421
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
422
+ )
423
+
424
+ hidden_states = inputs_embeds
425
+
426
+ if self.gradient_checkpointing and self.training:
427
+ if use_cache:
428
+ logger.warning_once(
429
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
430
+ )
431
+ use_cache = False
432
+
433
+ # decoder layers
434
+ all_hidden_states = () if output_hidden_states else None
435
+ all_self_attns = () if output_attentions else None
436
+ next_decoder_cache = () if use_cache else None
437
+
438
+ for idx, decoder_layer in enumerate(self.layers):
439
+ if output_hidden_states:
440
+ all_hidden_states += (hidden_states,)
441
+
442
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
443
+
444
+ if self.gradient_checkpointing and self.training:
445
+
446
+ def create_custom_forward(module):
447
+ def custom_forward(*inputs):
448
+ # None for past_key_value
449
+ return module(*inputs, output_attentions, None)
450
+
451
+ return custom_forward
452
+
453
+ layer_outputs = torch.utils.checkpoint.checkpoint(
454
+ create_custom_forward(decoder_layer),
455
+ hidden_states,
456
+ attention_mask,
457
+ position_ids,
458
+ None,
459
+ )
460
+ else:
461
+ layer_outputs = decoder_layer(
462
+ hidden_states,
463
+ attention_mask=attention_mask,
464
+ position_ids=position_ids,
465
+ past_key_value=past_key_value,
466
+ output_attentions=output_attentions,
467
+ use_cache=use_cache,
468
+ )
469
+
470
+ hidden_states = layer_outputs[0]
471
+
472
+ if use_cache:
473
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
474
+
475
+ if output_attentions:
476
+ all_self_attns += (layer_outputs[1],)
477
+
478
+ hidden_states = self.norm(hidden_states)
479
+
480
+ # add hidden states from the last decoder layer
481
+ if output_hidden_states:
482
+ all_hidden_states += (hidden_states,)
483
+
484
+ next_cache = next_decoder_cache if use_cache else None
485
+ if not return_dict:
486
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
487
+ return BaseModelOutputWithPast(
488
+ last_hidden_state=hidden_states,
489
+ past_key_values=next_cache,
490
+ hidden_states=all_hidden_states,
491
+ attentions=all_self_attns,
492
+ )
493
+
494
+
495
+ class NormHead(nn.Module):
496
+ def __init__(self, hidden_size, vocab_size, bias=False):
497
+ super().__init__()
498
+ self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
499
+ nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
500
+ self.first_flag = True
501
+
502
+ def forward(self, hidden_states):
503
+ if self.training:
504
+ norm_weight = nn.functional.normalize(self.weight)
505
+ self.first_flag = True
506
+ elif self.first_flag:
507
+ self.first_flag = False
508
+ self.weight.data = nn.functional.normalize(self.weight)
509
+ norm_weight = self.weight
510
+ else:
511
+ norm_weight = self.weight
512
+ return nn.functional.linear(hidden_states, norm_weight)
513
+
514
+ _init_weights = True
515
+ @contextmanager
516
+ def no_init_weights(_enable=True):
517
+ global _init_weights
518
+ old_init_weights = _init_weights
519
+ if _enable:
520
+ _init_weights = False
521
+ try:
522
+ yield
523
+ finally:
524
+ _init_weights = old_init_weights
525
+
526
+ class BaichuanForCausalLM(BaichuanPreTrainedModel):
527
+ def __init__(self, config, *model_args, **model_kwargs):
528
+ super().__init__(config, *model_args, **model_kwargs)
529
+ self.model = BaichuanModel(config)
530
+
531
+ self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
532
+ if hasattr(config, "quantization_config") and isinstance(config.quantization_config, dict) and config.quantization_config.get('load_in_4bit', False):
533
+ try:
534
+ from .quantizer import quantize_offline, init_model_weight_int4
535
+ except ImportError:
536
+ raise ImportError(f"Needs QLinear to run quantize.")
537
+ quantize_offline(self, 4)
538
+ # Initialize weights and apply final processing
539
+ self.post_init()
540
+
541
+ def get_input_embeddings(self):
542
+ return self.model.embed_tokens
543
+
544
+ def set_input_embeddings(self, value):
545
+ self.model.embed_tokens = value
546
+
547
+ def get_output_embeddings(self):
548
+ return self.lm_head
549
+
550
+ def set_output_embeddings(self, new_embeddings):
551
+ self.lm_head = new_embeddings
552
+
553
+ def set_decoder(self, decoder):
554
+ self.model = decoder
555
+
556
+ def get_decoder(self):
557
+ return self.model
558
+
559
+ @classmethod
560
+ def from_pretrained(
561
+ cls,
562
+ pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
563
+ *model_args,
564
+ config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
565
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
566
+ ignore_mismatched_sizes: bool = False,
567
+ force_download: bool = False,
568
+ local_files_only: bool = False,
569
+ token: Optional[Union[str, bool]] = None,
570
+ revision: str = "main",
571
+ use_safetensors: bool = None,
572
+ **kwargs,
573
+ ):
574
+ # Load config if we don't provide a configuration
575
+ if not isinstance(config, PretrainedConfig):
576
+ config_path = config if config is not None else pretrained_model_name_or_path
577
+ config, model_kwargs = cls.config_class.from_pretrained(
578
+ config_path,
579
+ cache_dir=cache_dir,
580
+ return_unused_kwargs=True,
581
+ force_download=force_download,
582
+ resume_download=False,
583
+ proxies=None,
584
+ local_files_only=local_files_only,
585
+ token=token,
586
+ revision=revision,
587
+ subfolder="",
588
+ _from_auto=False,
589
+ _from_pipeline=None,
590
+ **kwargs,
591
+ )
592
+ else:
593
+ model_kwargs = kwargs
594
+
595
+ if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
596
+ try:
597
+ from .quantizer import init_model_weight_int4
598
+ from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
599
+ from accelerate.utils import CustomDtype
600
+ from accelerate.utils import get_balanced_memory
601
+ except ImportError:
602
+ raise ImportError(f"Needs import model weight init func to run quantize.")
603
+ # Instantiate model.
604
+ init_contexts = [no_init_weights(_enable=True)]
605
+ init_contexts.append(init_empty_weights())
606
+ with ContextManagers(init_contexts):
607
+ model = cls(config)
608
+
609
+ model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
610
+ state_dict = torch.load(model_file, map_location="cpu")
611
+ model.is_quantized = True
612
+
613
+ device_map = kwargs.pop("device_map", None)
614
+ torch_dtype = kwargs.pop("torch_dtype", None)
615
+
616
+ if device_map is not None:
617
+ kwargs = {"no_split_module_classes": model._no_split_modules}
618
+ target_dtype = CustomDtype.INT4
619
+ max_memory = get_balanced_memory(
620
+ model,
621
+ dtype=target_dtype,
622
+ low_zero=(device_map == "balanced_low_0"),
623
+ max_memory=None,
624
+ **kwargs,
625
+ )
626
+ kwargs["max_memory"] = max_memory
627
+ device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
628
+
629
+ model = init_model_weight_int4(config, model, state_dict)
630
+
631
+ # Set model in evaluation mode to deactivate DropOut modules by default
632
+ model.eval()
633
+ # If it is a model with generation capabilities, attempt to load the generation config
634
+ if model.can_generate():
635
+ try:
636
+ model.generation_config = GenerationConfig.from_pretrained(
637
+ pretrained_model_name_or_path,
638
+ cache_dir=cache_dir,
639
+ force_download=force_download,
640
+ resume_download=False,
641
+ proxies=None,
642
+ local_files_only=local_files_only,
643
+ token=token,
644
+ revision=revision,
645
+ subfolder="",
646
+ _from_auto=False,
647
+ _from_pipeline=None,
648
+ **kwargs,
649
+ )
650
+ except (OSError, TypeError):
651
+ logger.info(
652
+ "Generation config file not found, using a generation config created from the model config."
653
+ )
654
+ pass
655
+
656
+ if device_map is not None:
657
+ dispatch_model(model, device_map=device_map)
658
+
659
+ return model
660
+ return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args,
661
+ config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes,
662
+ force_download=force_download, local_files_only=local_files_only, token=token, revision=revision,
663
+ use_safetensors=use_safetensors, **kwargs)
664
+
665
+ def forward(
666
+ self,
667
+ input_ids: torch.LongTensor = None,
668
+ attention_mask: Optional[torch.Tensor] = None,
669
+ position_ids: Optional[torch.LongTensor] = None,
670
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
671
+ inputs_embeds: Optional[torch.FloatTensor] = None,
672
+ labels: Optional[torch.LongTensor] = None,
673
+ use_cache: Optional[bool] = None,
674
+ output_attentions: Optional[bool] = None,
675
+ output_hidden_states: Optional[bool] = None,
676
+ return_dict: Optional[bool] = None,
677
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
678
+
679
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
680
+ output_hidden_states = (
681
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
682
+ )
683
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
684
+
685
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
686
+ outputs = self.model(
687
+ input_ids=input_ids,
688
+ attention_mask=attention_mask,
689
+ position_ids=position_ids,
690
+ past_key_values=past_key_values,
691
+ inputs_embeds=inputs_embeds,
692
+ use_cache=use_cache,
693
+ output_attentions=output_attentions,
694
+ output_hidden_states=output_hidden_states,
695
+ return_dict=return_dict,
696
+ )
697
+
698
+ hidden_states = outputs[0]
699
+ logits = self.lm_head(hidden_states)
700
+ loss = None
701
+ if labels is not None:
702
+ # Shift so that tokens < n predict n
703
+ shift_logits = logits[..., :-1, :].contiguous()
704
+ shift_labels = labels[..., 1:].contiguous()
705
+ # Flatten the tokens
706
+ loss_fct = CrossEntropyLoss()
707
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
708
+ shift_labels = shift_labels.view(-1)
709
+ softmax_normalizer = shift_logits.max(-1).values ** 2
710
+ z_loss = self.config.z_loss_weight * softmax_normalizer.mean()
711
+ # Enable model parallelism
712
+ shift_labels = shift_labels.to(shift_logits.device)
713
+ loss = loss_fct(shift_logits, shift_labels) + z_loss
714
+
715
+ if not return_dict:
716
+ output = (logits,) + outputs[1:]
717
+ return (loss,) + output if loss is not None else output
718
+
719
+ return CausalLMOutputWithPast(
720
+ loss=loss,
721
+ logits=logits,
722
+ past_key_values=outputs.past_key_values,
723
+ hidden_states=outputs.hidden_states,
724
+ attentions=outputs.attentions,
725
+ )
726
+
727
+ def prepare_inputs_for_generation(
728
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
729
+ ):
730
+ if past_key_values:
731
+ input_ids = input_ids[:, -1:]
732
+
733
+ position_ids = kwargs.get("position_ids", None)
734
+ if attention_mask is not None and position_ids is None:
735
+ # create position_ids on the fly for batch generation
736
+ position_ids = attention_mask.long().cumsum(-1) - 1
737
+ position_ids.masked_fill_(attention_mask == 0, 1)
738
+ if past_key_values:
739
+ position_ids = position_ids[:, -1].unsqueeze(-1)
740
+
741
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
742
+ if inputs_embeds is not None and past_key_values is None:
743
+ model_inputs = {"inputs_embeds": inputs_embeds}
744
+ else:
745
+ model_inputs = {"input_ids": input_ids}
746
+
747
+ model_inputs.update(
748
+ {
749
+ "position_ids": position_ids,
750
+ "past_key_values": past_key_values,
751
+ "use_cache": kwargs.get("use_cache"),
752
+ "attention_mask": attention_mask,
753
+ }
754
+ )
755
+ return model_inputs
756
+
757
+ @staticmethod
758
+ def _reorder_cache(past_key_values, beam_idx):
759
+ reordered_past = ()
760
+ for layer_past in past_key_values:
761
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
762
+ return reordered_past
763
+
764
+ def quantize(self, bits: int):
765
+ try:
766
+ from .quantizer import quantize_online
767
+ except ImportError:
768
+ raise ImportError(f"Needs QLinear to run quantize.")
769
+ return quantize_online(self, bits)
770
+
771
+ def chat(self, tokenizer, messages: List[dict], stream=False,
772
+ generation_config: Optional[GenerationConfig]=None):
773
+ generation_config = generation_config or self.generation_config
774
+ input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
775
+ if stream:
776
+ streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
777
+ Thread(target=self.generate, kwargs=dict(
778
+ inputs=input_ids, streamer=streamer,
779
+ generation_config=generation_config,
780
+ )).start()
781
+ return streamer
782
+ else:
783
+ outputs = self.generate(input_ids, generation_config=generation_config)
784
+ response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
785
+ return response
multimodal_encoder.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ from .clip_encoder import CLIPVisionTower
17
+
18
+
19
+ def build_vision_tower(vision_tower_cfg, **kwargs):
20
+ vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
21
+ is_absolute_path_exists = os.path.exists(vision_tower)
22
+ if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion") or "ShareGPT4V" in vision_tower:
23
+ return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
24
+
25
+ raise ValueError(f'Unknown vision tower: {vision_tower}')
multimodal_projector.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import torch.nn as nn
16
+ import re
17
+
18
+
19
+ class IdentityMap(nn.Module):
20
+ def __init__(self):
21
+ super().__init__()
22
+
23
+ def forward(self, x, *args, **kwargs):
24
+ return x
25
+
26
+ @property
27
+ def config(self):
28
+ return {"mm_projector_type": 'identity'}
29
+
30
+
31
+ class SimpleResBlock(nn.Module):
32
+ def __init__(self, channels):
33
+ super().__init__()
34
+ self.pre_norm = nn.LayerNorm(channels)
35
+
36
+ self.proj = nn.Sequential(
37
+ nn.Linear(channels, channels),
38
+ nn.GELU(),
39
+ nn.Linear(channels, channels)
40
+ )
41
+ def forward(self, x):
42
+ x = self.pre_norm(x)
43
+ return x + self.proj(x)
44
+
45
+
46
+ def build_vision_projector(config, delay_load=False, **kwargs):
47
+ projector_type = getattr(config, 'mm_projector_type', 'linear')
48
+
49
+ if projector_type == 'linear':
50
+ return nn.Linear(config.mm_hidden_size, config.hidden_size)
51
+
52
+ mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
53
+ if mlp_gelu_match:
54
+ mlp_depth = int(mlp_gelu_match.group(1))
55
+ modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
56
+ for _ in range(1, mlp_depth):
57
+ modules.append(nn.GELU())
58
+ modules.append(nn.Linear(config.hidden_size, config.hidden_size))
59
+ return nn.Sequential(*modules)
60
+
61
+ if projector_type == 'identity':
62
+ return IdentityMap()
63
+
64
+ raise ValueError(f'Unknown projector type: {projector_type}')
quantizer.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import bitsandbytes as bnb
2
+ from bitsandbytes.nn.modules import Params4bit, Int8Params
3
+ import torch
4
+
5
+ def Params4bitCuda(self, device):
6
+ self.data = self.data.cuda(device)
7
+ self.quant_state[0] = self.quant_state[0].cuda(device)
8
+ self.quant_state[4][0] = self.quant_state[4][0].cuda(device)
9
+ self.quant_state[4][1][0] = self.quant_state[4][1][0].cuda(device)
10
+ self.quant_state[4][1][1] = self.quant_state[4][1][1].cuda(device)
11
+
12
+ self.quant_state[6] = self.quant_state[6].cuda(device)
13
+ return self
14
+
15
+ class Linear4bitOnline(torch.nn.Module):
16
+ def __init__(self, weight, bias, quant_type):
17
+ super().__init__()
18
+ self.weight = Params4bit(
19
+ weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type
20
+ )
21
+ self.compute_dtype = None
22
+ #self.weight.cuda(weight.device)
23
+ self.bias = bias
24
+
25
+ def forward(self, x: torch.Tensor):
26
+ # weights are cast automatically as Int8Params, but the bias has to be cast manually
27
+ if self.bias is not None and self.bias.dtype != x.dtype:
28
+ self.bias.data = self.bias.data.to(x.dtype)
29
+
30
+ if getattr(self.weight, "quant_state", None) is None:
31
+ print(
32
+ "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
33
+ )
34
+ inp_dtype = x.dtype
35
+ if self.compute_dtype is not None:
36
+ x = x.to(self.compute_dtype)
37
+
38
+ bias = None if self.bias is None else self.bias.to(self.compute_dtype)
39
+ out = bnb.matmul_4bit(
40
+ x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
41
+ )
42
+
43
+ out = out.to(inp_dtype)
44
+
45
+ return out
46
+
47
+ class Linear8bitLtOnline(torch.nn.Module):
48
+ def __init__(
49
+ self,
50
+ weight,
51
+ bias,
52
+ has_fp16_weights=True,
53
+ memory_efficient_backward=False,
54
+ threshold=0.0,
55
+ index=None,
56
+ ):
57
+ super().__init__()
58
+ assert (
59
+ not memory_efficient_backward
60
+ ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
61
+ self.state = bnb.MatmulLtState()
62
+ self.index = index
63
+
64
+ # Necessary for stacked layers
65
+ self.state.threshold = threshold
66
+ self.state.has_fp16_weights = has_fp16_weights
67
+ self.state.memory_efficient_backward = memory_efficient_backward
68
+ if threshold > 0.0 and not has_fp16_weights:
69
+ self.state.use_pool = True
70
+
71
+ self.weight = Int8Params(
72
+ weight.data,
73
+ has_fp16_weights=has_fp16_weights,
74
+ requires_grad=has_fp16_weights,
75
+ )
76
+ self.bias = bias
77
+
78
+ def init_8bit_state(self):
79
+ self.state.CB = self.weight.CB
80
+ self.state.SCB = self.weight.SCB
81
+ self.weight.CB = None
82
+ self.weight.SCB = None
83
+
84
+ def forward(self, x: torch.Tensor):
85
+ self.state.is_training = self.training
86
+ if self.weight.CB is not None:
87
+ self.init_8bit_state()
88
+
89
+ # weights are cast automatically as Int8Params, but the bias has to be cast manually
90
+ if self.bias is not None and self.bias.dtype != x.dtype:
91
+ self.bias.data = self.bias.data.to(x.dtype)
92
+
93
+ out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
94
+
95
+ if not self.state.has_fp16_weights:
96
+ if self.state.CB is not None and self.state.CxB is not None:
97
+ # we converted 8-bit row major to turing/ampere format in the first inference pass
98
+ # we no longer need the row-major weight
99
+ del self.state.CB
100
+ self.weight.data = self.state.CxB
101
+ return out
102
+
103
+ def quantize_offline(model, bits: int):
104
+ assert (bits == 4), f'bits: {bits} is not supported'
105
+
106
+ for i, layer in enumerate(model.model.layers):
107
+ layer.self_attn.W_pack = bnb.nn.Linear4bit(
108
+ layer.self_attn.W_pack.weight.shape[1],
109
+ layer.self_attn.W_pack.weight.shape[0],
110
+ False,
111
+ torch.float16,
112
+ compress_statistics=True,
113
+ quant_type="nf4",
114
+ )
115
+ layer.self_attn.o_proj = bnb.nn.Linear4bit(
116
+ layer.self_attn.o_proj.weight.shape[1],
117
+ layer.self_attn.o_proj.weight.shape[0],
118
+ False,
119
+ torch.float16,
120
+ compress_statistics=True,
121
+ quant_type="nf4",
122
+ )
123
+
124
+ layer.mlp.gate_proj = bnb.nn.Linear4bit(
125
+ layer.mlp.gate_proj.weight.shape[1],
126
+ layer.mlp.gate_proj.weight.shape[0],
127
+ False,
128
+ torch.float16,
129
+ compress_statistics=True,
130
+ quant_type="nf4",
131
+ )
132
+ layer.mlp.down_proj = bnb.nn.Linear4bit(
133
+ layer.mlp.down_proj.weight.shape[1],
134
+ layer.mlp.down_proj.weight.shape[0],
135
+ False,
136
+ torch.float16,
137
+ compress_statistics=True,
138
+ quant_type="nf4",
139
+ )
140
+ layer.mlp.up_proj = bnb.nn.Linear4bit(
141
+ layer.mlp.up_proj.weight.shape[1],
142
+ layer.mlp.up_proj.weight.shape[0],
143
+ False,
144
+ torch.float16,
145
+ compress_statistics=True,
146
+ quant_type="nf4",
147
+ )
148
+ return model
149
+
150
+ def quantize_online(model, bits: int):
151
+ def quant(weight, bias=None):
152
+ if bits == 8:
153
+ linear = Linear8bitLtOnline(
154
+ weight,
155
+ bias,
156
+ has_fp16_weights=False,
157
+ threshold=6.0,
158
+ )
159
+ if bias is not None:
160
+ linear.bias = torch.nn.Parameter(bias)
161
+ elif bits == 4:
162
+ linear = Linear4bitOnline(
163
+ weight,
164
+ bias,
165
+ quant_type="nf4", #fp4/nf4
166
+ )
167
+ else:
168
+ raise ValueError("quantize only support 4/8 bit")
169
+ return linear
170
+
171
+ for i, layer in enumerate(model.model.layers):
172
+ layer.self_attn.W_pack = quant(layer.self_attn.W_pack.weight)
173
+ layer.self_attn.o_proj = quant(layer.self_attn.o_proj.weight)
174
+ layer.mlp.gate_proj = quant(layer.mlp.gate_proj.weight)
175
+ layer.mlp.down_proj = quant(layer.mlp.down_proj.weight)
176
+ layer.mlp.up_proj = quant(layer.mlp.up_proj.weight)
177
+ return model
178
+
179
+ def init_model_weight_int4(config, model, state_dict):
180
+ #replace Params4bit.cuda with Params4bitCuda
181
+ Params4bit.cuda = Params4bitCuda
182
+
183
+ for i in range(config.num_hidden_layers):
184
+ weight_data = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.data']
185
+ weight_quant_state = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.quant_state']
186
+ model.model.layers[i].self_attn.W_pack.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
187
+
188
+ weight_data = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.data']
189
+ weight_quant_state = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.quant_state']
190
+ model.model.layers[i].self_attn.o_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
191
+
192
+ weight_data = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.data']
193
+ weight_quant_state = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.quant_state']
194
+ model.model.layers[i].mlp.gate_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
195
+
196
+ weight_data = state_dict[f'model.layers.{i}.mlp.up_proj.weight.data']
197
+ weight_quant_state = state_dict[f'model.layers.{i}.mlp.up_proj.weight.quant_state']
198
+ model.model.layers[i].mlp.up_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
199
+
200
+ weight_data = state_dict[f'model.layers.{i}.mlp.down_proj.weight.data']
201
+ weight_quant_state = state_dict[f'model.layers.{i}.mlp.down_proj.weight.quant_state']
202
+ model.model.layers[i].mlp.down_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
203
+
204
+ model.model.layers[i].input_layernorm.weight = state_dict[f'model.layers.{i}.input_layernorm.weight']
205
+ model.model.layers[i].post_attention_layernorm.weight = state_dict[f'model.layers.{i}.post_attention_layernorm.weight']
206
+
207
+ model.model.embed_tokens.weight = state_dict['model.embed_tokens.weight']
208
+ model.model.norm.weight = state_dict['model.norm.weight']
209
+ model.lm_head.weight = state_dict['lm_head.weight']
210
+ return model
utils.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Haotian Liu
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import ast
16
+ import math
17
+ import torch
18
+ from PIL import Image
19
+
20
+ from .constants import IMAGE_TOKEN_INDEX
21
+
22
+
23
+ def get_model_name_from_path(model_path):
24
+ model_path = model_path.strip("/")
25
+ model_paths = model_path.split("/")
26
+ if model_paths[-1].startswith('checkpoint-'):
27
+ return model_paths[-2] + "_" + model_paths[-1]
28
+ else:
29
+ return model_paths[-1]
30
+
31
+
32
+ def select_best_resolution(original_size, possible_resolutions):
33
+ """
34
+ Selects the best resolution from a list of possible resolutions based on the original size.
35
+
36
+ Args:
37
+ original_size (tuple): The original size of the image in the format (width, height).
38
+ possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
39
+
40
+ Returns:
41
+ tuple: The best fit resolution in the format (width, height).
42
+ """
43
+ original_width, original_height = original_size
44
+ best_fit = None
45
+ max_effective_resolution = 0
46
+ min_wasted_resolution = float('inf')
47
+
48
+ for width, height in possible_resolutions:
49
+ scale = min(width / original_width, height / original_height)
50
+ downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
51
+ effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
52
+ wasted_resolution = (width * height) - effective_resolution
53
+
54
+ if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
55
+ max_effective_resolution = effective_resolution
56
+ min_wasted_resolution = wasted_resolution
57
+ best_fit = (width, height)
58
+
59
+ return best_fit
60
+
61
+
62
+ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
63
+ """
64
+ Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
65
+
66
+ Args:
67
+ image_size (tuple): The size of the input image in the format (width, height).
68
+ grid_pinpoints (str): A string representation of a list of possible resolutions.
69
+ patch_size (int): The size of each image patch.
70
+
71
+ Returns:
72
+ tuple: The shape of the image patch grid in the format (width, height).
73
+ """
74
+ if type(grid_pinpoints) is list:
75
+ possible_resolutions = grid_pinpoints
76
+ else:
77
+ possible_resolutions = ast.literal_eval(grid_pinpoints)
78
+ width, height = select_best_resolution(image_size, possible_resolutions)
79
+ return width // patch_size, height // patch_size
80
+
81
+
82
+ def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
83
+ prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
84
+
85
+ def insert_separator(X, sep):
86
+ return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
87
+
88
+ input_ids = []
89
+ offset = 0
90
+ if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
91
+ offset = 1
92
+ input_ids.append(prompt_chunks[0][0])
93
+
94
+ for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
95
+ input_ids.extend(x[offset:])
96
+
97
+ if return_tensors is not None:
98
+ if return_tensors == 'pt':
99
+ return torch.tensor(input_ids, dtype=torch.long)
100
+ raise ValueError(f'Unsupported tensor type: {return_tensors}')
101
+ return input_ids
102
+
103
+
104
+ def expand2square(pil_img, background_color):
105
+ width, height = pil_img.size
106
+ if width == height:
107
+ return pil_img
108
+ elif width > height:
109
+ result = Image.new(pil_img.mode, (width, width), background_color)
110
+ result.paste(pil_img, (0, (width - height) // 2))
111
+ return result
112
+ else:
113
+ result = Image.new(pil_img.mode, (height, height), background_color)
114
+ result.paste(pil_img, ((height - width) // 2, 0))
115
+ return result
116
+
117
+
118
+ def resize_and_pad_image(image, target_resolution):
119
+ """
120
+ Resize and pad an image to a target resolution while maintaining aspect ratio.
121
+
122
+ Args:
123
+ image (PIL.Image.Image): The input image.
124
+ target_resolution (tuple): The target resolution (width, height) of the image.
125
+
126
+ Returns:
127
+ PIL.Image.Image: The resized and padded image.
128
+ """
129
+ original_width, original_height = image.size
130
+ target_width, target_height = target_resolution
131
+
132
+ scale_w = target_width / original_width
133
+ scale_h = target_height / original_height
134
+
135
+ if scale_w < scale_h:
136
+ new_width = target_width
137
+ new_height = min(math.ceil(original_height * scale_w), target_height)
138
+ else:
139
+ new_height = target_height
140
+ new_width = min(math.ceil(original_width * scale_h), target_width)
141
+
142
+ # Resize the image
143
+ resized_image = image.resize((new_width, new_height))
144
+
145
+ new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
146
+ paste_x = (target_width - new_width) // 2
147
+ paste_y = (target_height - new_height) // 2
148
+ new_image.paste(resized_image, (paste_x, paste_y))
149
+
150
+ return new_image
151
+
152
+
153
+ def divide_to_patches(image, patch_size):
154
+ """
155
+ Divides an image into patches of a specified size.
156
+
157
+ Args:
158
+ image (PIL.Image.Image): The input image.
159
+ patch_size (int): The size of each patch.
160
+
161
+ Returns:
162
+ list: A list of PIL.Image.Image objects representing the patches.
163
+ """
164
+ patches = []
165
+ width, height = image.size
166
+ for i in range(0, height, patch_size):
167
+ for j in range(0, width, patch_size):
168
+ box = (j, i, j + patch_size, i + patch_size)
169
+ patch = image.crop(box)
170
+ patches.append(patch)
171
+
172
+ return patches
173
+
174
+
175
+ def process_anyres_image(image, processor, grid_pinpoints):
176
+ """
177
+ Process an image with variable resolutions.
178
+
179
+ Args:
180
+ image (PIL.Image.Image): The input image to be processed.
181
+ processor: The image processor object.
182
+ grid_pinpoints (str): A string representation of a list of possible resolutions.
183
+
184
+ Returns:
185
+ torch.Tensor: A tensor containing the processed image patches.
186
+ """
187
+ if type(grid_pinpoints) is list:
188
+ possible_resolutions = grid_pinpoints
189
+ else:
190
+ possible_resolutions = ast.literal_eval(grid_pinpoints)
191
+ best_resolution = select_best_resolution(image.size, possible_resolutions)
192
+ image_padded = resize_and_pad_image(image, best_resolution)
193
+
194
+ patches = divide_to_patches(image_padded, processor.crop_size['height'])
195
+
196
+ image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
197
+
198
+ image_patches = [image_original_resize] + patches
199
+ image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
200
+ for image_patch in image_patches]
201
+ return torch.stack(image_patches, dim=0)
202
+
203
+
204
+ def process_images(images, image_processor, model_cfg):
205
+ image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
206
+ new_images = []
207
+ if image_aspect_ratio == 'pad':
208
+ for image in images:
209
+ image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
210
+ image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
211
+ new_images.append(image)
212
+ elif image_aspect_ratio == "anyres":
213
+ for image in images:
214
+ image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
215
+ new_images.append(image)
216
+ else:
217
+ return image_processor(images, return_tensors='pt')['pixel_values']
218
+ if all(x.shape == new_images[0].shape for x in new_images):
219
+ new_images = torch.stack(new_images, dim=0)
220
+ return new_images