File size: 1,808 Bytes
fecb91c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
model-index:
- name: rap_phase2_22jan_5i_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rap_phase2_22jan_5i_v1

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0219

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.3647        | 1.0   | 5010  | 0.0825          |
| 0.0693        | 2.0   | 10020 | 0.0517          |
| 0.0228        | 3.0   | 15030 | 0.0656          |
| 0.0288        | 4.0   | 20040 | 0.0327          |
| 0.0387        | 5.0   | 25050 | 0.0448          |
| 0.0171        | 6.0   | 30060 | 0.0207          |
| 0.0136        | 7.0   | 35070 | 0.0163          |
| 0.0059        | 8.0   | 40080 | 0.0200          |
| 0.0062        | 9.0   | 45090 | 0.0243          |
| 0.0002        | 10.0  | 50100 | 0.0233          |
| 0.002         | 11.0  | 55110 | 0.0219          |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0