--- language: - en license: cc tags: - CoT model-index: - name: bun_mistral_7b_v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 59.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/bun_mistral_7b_v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.65 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/bun_mistral_7b_v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/bun_mistral_7b_v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 40.67 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/bun_mistral_7b_v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.3 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/bun_mistral_7b_v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 35.25 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aloobun/bun_mistral_7b_v2 name: Open LLM Leaderboard --- finetuned of mistralai/Mistral-7B-v0.1 for CoT reasoning - gptq : [TheBloke/bun_mistral_7b_v2-GPTQ](https://huggingface.co/TheBloke/bun_mistral_7b_v2-GPTQ) - awq : [TheBloke/bun_mistral_7b_v2-AWQ](https://huggingface.co/TheBloke/bun_mistral_7b_v2-AWQ) - gguf : [TheBloke/bun_mistral_7b_v2-GGUF](https://huggingface.co/TheBloke/bun_mistral_7b_v2-GGUF) Fine-tuning language models is like tuning the strings of an AI banjo in the cosmic saloon of the digital frontier. We're not just slinging code; it's a harmonious quest to shape the minds of silicon wanderers, crafting binary ballads and electronic echoes. Picture it as cybernetic bardic magic, where we, the tech sorcerers, weave algorithms with strands of imagination. But, in this cosmic hoedown, there's a twist – as we twang the strings of artificial intelligence, we're also seeding the algorithms with a bit of human stardust, adding quirks and quirksome biases. So, as we two-step into this frontier of creation, are we summoning AI troubadours of the future or just conjuring interstellar jesters, spinning tales of silicon whimsy and digital campfire banter? # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_aloobun__bun_mistral_7b_v2) | Metric |Value| |---------------------------------|----:| |Avg. |59.76| |AI2 Reasoning Challenge (25-Shot)|59.90| |HellaSwag (10-Shot) |82.65| |MMLU (5-Shot) |61.77| |TruthfulQA (0-shot) |40.67| |Winogrande (5-shot) |78.30| |GSM8k (5-shot) |35.25|