almaghrabima
commited on
Commit
•
86f4cc1
1
Parent(s):
7fc84c3
Model save
Browse files- README.md +30 -41
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
@@ -10,18 +11,6 @@ metrics:
|
|
10 |
model-index:
|
11 |
- name: ner_column_bert-base-NER
|
12 |
results: []
|
13 |
-
language:
|
14 |
-
- en
|
15 |
-
widget:
|
16 |
-
- >-
|
17 |
-
india 0S0308Z8 trudeau 3000 Ravensburger Hamnoy, Lofoten of gold
|
18 |
-
bestseller 620463000001
|
19 |
-
- >-
|
20 |
-
other china lc waikiki mağazacilik hi̇zmetleri̇ ti̇c aş 630140000000 hilti
|
21 |
-
6204699090_BD 55L Toaster Oven with Double Glass
|
22 |
-
- >-
|
23 |
-
611020000001 italy Apparel other games 9W1964Z8 debenhams guangzhou hec
|
24 |
-
fashion leather co ltd
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Precision: 0.
|
36 |
-
- Recall: 0.
|
37 |
-
- F1: 0.
|
38 |
-
- Accuracy: 0.
|
39 |
|
40 |
## Model description
|
41 |
|
@@ -66,31 +55,31 @@ The following hyperparameters were used during training:
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
68 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
69 |
-
| No log | 1.0 | 702 | 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
|
90 |
|
91 |
### Framework versions
|
92 |
|
93 |
-
- Transformers 4.
|
94 |
-
- Pytorch
|
95 |
-
- Datasets 2.
|
96 |
-
- Tokenizers 0.13.3
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
base_model: dslim/bert-base-NER
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
|
|
11 |
model-index:
|
12 |
- name: ner_column_bert-base-NER
|
13 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1855
|
24 |
+
- Precision: 0.7651
|
25 |
+
- Recall: 0.7786
|
26 |
+
- F1: 0.7718
|
27 |
+
- Accuracy: 0.9026
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 702 | 0.7382 | 0.2576 | 0.1887 | 0.2178 | 0.7127 |
|
59 |
+
| 0.9356 | 2.0 | 1404 | 0.4405 | 0.5139 | 0.4331 | 0.4700 | 0.8157 |
|
60 |
+
| 0.5445 | 3.0 | 2106 | 0.3608 | 0.5712 | 0.5143 | 0.5413 | 0.8404 |
|
61 |
+
| 0.5445 | 4.0 | 2808 | 0.3226 | 0.6188 | 0.5840 | 0.6009 | 0.8550 |
|
62 |
+
| 0.4316 | 5.0 | 3510 | 0.2757 | 0.6788 | 0.6569 | 0.6676 | 0.8728 |
|
63 |
+
| 0.3605 | 6.0 | 4212 | 0.2828 | 0.6584 | 0.6346 | 0.6463 | 0.8697 |
|
64 |
+
| 0.3605 | 7.0 | 4914 | 0.2456 | 0.7108 | 0.6926 | 0.7015 | 0.8820 |
|
65 |
+
| 0.3153 | 8.0 | 5616 | 0.2385 | 0.7055 | 0.6986 | 0.7021 | 0.8855 |
|
66 |
+
| 0.282 | 9.0 | 6318 | 0.2345 | 0.7044 | 0.6961 | 0.7002 | 0.8853 |
|
67 |
+
| 0.2587 | 10.0 | 7020 | 0.2313 | 0.7081 | 0.7049 | 0.7065 | 0.8862 |
|
68 |
+
| 0.2587 | 11.0 | 7722 | 0.2026 | 0.7734 | 0.7537 | 0.7634 | 0.8968 |
|
69 |
+
| 0.239 | 12.0 | 8424 | 0.1980 | 0.7651 | 0.7687 | 0.7669 | 0.8991 |
|
70 |
+
| 0.2241 | 13.0 | 9126 | 0.2091 | 0.7368 | 0.7423 | 0.7395 | 0.8936 |
|
71 |
+
| 0.2241 | 14.0 | 9828 | 0.1954 | 0.7693 | 0.7684 | 0.7689 | 0.8987 |
|
72 |
+
| 0.2124 | 15.0 | 10530 | 0.1916 | 0.7668 | 0.7749 | 0.7708 | 0.9008 |
|
73 |
+
| 0.2025 | 16.0 | 11232 | 0.1841 | 0.7699 | 0.7794 | 0.7746 | 0.9024 |
|
74 |
+
| 0.2025 | 17.0 | 11934 | 0.1938 | 0.7527 | 0.7626 | 0.7576 | 0.8992 |
|
75 |
+
| 0.193 | 18.0 | 12636 | 0.1849 | 0.7705 | 0.7841 | 0.7772 | 0.9040 |
|
76 |
+
| 0.1877 | 19.0 | 13338 | 0.1927 | 0.7510 | 0.7649 | 0.7579 | 0.9005 |
|
77 |
+
| 0.1821 | 20.0 | 14040 | 0.1855 | 0.7651 | 0.7786 | 0.7718 | 0.9026 |
|
78 |
|
79 |
|
80 |
### Framework versions
|
81 |
|
82 |
+
- Transformers 4.33.2
|
83 |
+
- Pytorch 2.0.1+cu117
|
84 |
+
- Datasets 2.14.5
|
85 |
+
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 430967977
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7ab94fb2abfc6fc1cbb4a21b9246df56c92a5adf94be72639ac12dc9b5c69ba
|
3 |
size 430967977
|