almaghrabima
commited on
Commit
•
6d77378
1
Parent(s):
df07950
update model card README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,84 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: ner_column_TQ
|
12 |
+
results: []
|
13 |
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# ner_column_TQ
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [Gladiator/microsoft-deberta-v3-large_ner_conll2003](https://huggingface.co/Gladiator/microsoft-deberta-v3-large_ner_conll2003) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2111
|
23 |
+
- Precision: 0.8593
|
24 |
+
- Recall: 0.8587
|
25 |
+
- F1: 0.8590
|
26 |
+
- Accuracy: 0.9163
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 64
|
47 |
+
- eval_batch_size: 64
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 702 | 0.1938 | 0.7778 | 0.7851 | 0.7815 | 0.8957 |
|
58 |
+
| 0.3587 | 2.0 | 1404 | 0.1562 | 0.8216 | 0.8219 | 0.8217 | 0.9098 |
|
59 |
+
| 0.1645 | 3.0 | 2106 | 0.1472 | 0.8161 | 0.8268 | 0.8214 | 0.9114 |
|
60 |
+
| 0.1645 | 4.0 | 2808 | 0.1528 | 0.8357 | 0.8195 | 0.8275 | 0.9097 |
|
61 |
+
| 0.1372 | 5.0 | 3510 | 0.1411 | 0.8301 | 0.8349 | 0.8325 | 0.9141 |
|
62 |
+
| 0.1259 | 6.0 | 4212 | 0.1396 | 0.8341 | 0.8431 | 0.8386 | 0.9149 |
|
63 |
+
| 0.1259 | 7.0 | 4914 | 0.1470 | 0.8178 | 0.8323 | 0.8250 | 0.9126 |
|
64 |
+
| 0.1205 | 8.0 | 5616 | 0.1413 | 0.8421 | 0.8480 | 0.8451 | 0.9156 |
|
65 |
+
| 0.1152 | 9.0 | 6318 | 0.1417 | 0.8342 | 0.8481 | 0.8411 | 0.9158 |
|
66 |
+
| 0.1126 | 10.0 | 7020 | 0.1475 | 0.8427 | 0.8493 | 0.8460 | 0.9154 |
|
67 |
+
| 0.1126 | 11.0 | 7722 | 0.1490 | 0.8477 | 0.8510 | 0.8493 | 0.9155 |
|
68 |
+
| 0.108 | 12.0 | 8424 | 0.1535 | 0.8511 | 0.8540 | 0.8526 | 0.9160 |
|
69 |
+
| 0.1035 | 13.0 | 9126 | 0.1569 | 0.8515 | 0.8552 | 0.8533 | 0.9160 |
|
70 |
+
| 0.1035 | 14.0 | 9828 | 0.1677 | 0.8530 | 0.8537 | 0.8534 | 0.9158 |
|
71 |
+
| 0.097 | 15.0 | 10530 | 0.1721 | 0.8549 | 0.8557 | 0.8553 | 0.9159 |
|
72 |
+
| 0.0912 | 16.0 | 11232 | 0.1822 | 0.8573 | 0.8574 | 0.8573 | 0.9165 |
|
73 |
+
| 0.0912 | 17.0 | 11934 | 0.1969 | 0.8577 | 0.8578 | 0.8577 | 0.9158 |
|
74 |
+
| 0.0854 | 18.0 | 12636 | 0.1969 | 0.8597 | 0.8587 | 0.8592 | 0.9165 |
|
75 |
+
| 0.08 | 19.0 | 13338 | 0.2035 | 0.8587 | 0.8587 | 0.8587 | 0.9165 |
|
76 |
+
| 0.0768 | 20.0 | 14040 | 0.2111 | 0.8593 | 0.8587 | 0.8590 | 0.9163 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.30.2
|
82 |
+
- Pytorch 1.13.1+cu116
|
83 |
+
- Datasets 2.13.2
|
84 |
+
- Tokenizers 0.13.3
|