Text Generation
Transformers
Safetensors
English
olmo
conversational
Inference Endpoints
hamishivi commited on
Commit
f750740
1 Parent(s): 453356e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -19,7 +19,7 @@ language:
19
 
20
  OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
21
  The OLMo base models are trained on the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset.
22
- The adapted versions are trained on the [Tulu SFT mixture](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) and, for the Instruct version, a [cleaned version of the UltraFeedback dataset](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned).
23
 
24
  OLMo 7B Instruct SFT are two adapted versions of these models trained for better question answering.
25
  These are updated OLMo models corresponding to our July 2024 release.
@@ -30,8 +30,8 @@ They show the performance gain that OLMo base models can achieve with existing f
30
  We release two adapted model versions:
31
  | Model | Training Method(s) | Datasets | Context Length |
32
  |------|--------|---------|--|
33
- | [OLMo 7B July 2024 SFT](https://huggingface.co/allenai/OLMo-1.7-7B-Nitro-SFT-hf) | SFT | [Tulu 2 SFT Mix](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) | 2048 |
34
- | [OLMo 7B July 2024 Instruct](https://huggingface.co/allenai/OLMo-1.7-7B-Nitro-Instruct-hf) | SFT + DPO | [Tulu 2 SFT Mix](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) + [Ultrafeedback Cleaned](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned) | 2048 |
35
 
36
  These models are both trained on top of OLMo 7b July 2024:
37
  | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
@@ -104,7 +104,7 @@ Core model results for the 7B adapted models are found below.
104
  ## Model Details
105
 
106
  ### Data
107
- For training data details, please see the [Dolma](https://huggingface.co/datasets/allenai/dolma), [Tulu 2](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture), and [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) documentation.
108
 
109
  ### Architecture
110
 
 
19
 
20
  OLMo is a series of **O**pen **L**anguage **Mo**dels designed to enable the science of language models.
21
  The OLMo base models are trained on the [Dolma](https://huggingface.co/datasets/allenai/dolma) dataset.
22
+ The adapted versions are trained on the [Tulu SFT mixture](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture-olmo-4096) and, for the Instruct version, a [cleaned version of the UltraFeedback dataset](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned).
23
 
24
  OLMo 7B Instruct SFT are two adapted versions of these models trained for better question answering.
25
  These are updated OLMo models corresponding to our July 2024 release.
 
30
  We release two adapted model versions:
31
  | Model | Training Method(s) | Datasets | Context Length |
32
  |------|--------|---------|--|
33
+ | [OLMo 7B July 2024 SFT](https://huggingface.co/allenai/OLMo-1.7-7B-Nitro-SFT-hf) | SFT | [Tulu 2 SFT Mix](https://huggingface.co/datasets/allenai/allenai/tulu-v2-sft-mixture-olmo-4096) | 4096 |
34
+ | [OLMo 7B July 2024 Instruct](https://huggingface.co/allenai/OLMo-1.7-7B-Nitro-Instruct-hf) | SFT + DPO | [Tulu 2 SFT Mix](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture-olmo-4096) + [Ultrafeedback Cleaned](https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned) | 4096 |
35
 
36
  These models are both trained on top of OLMo 7b July 2024:
37
  | Size | Training Tokens | Layers | Hidden Size | Attention Heads | Context Length |
 
104
  ## Model Details
105
 
106
  ### Data
107
+ For training data details, please see the [Dolma](https://huggingface.co/datasets/allenai/dolma), [Tulu 2](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture-olmo-4096), and [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) documentation.
108
 
109
  ### Architecture
110