alirezamsh
commited on
Commit
•
f2a2fc5
1
Parent(s):
372ad14
add tokenizer code
Browse files- tokenization_small100.py +364 -0
tokenization_small100.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022 Idiap Research Institute, http://www.idiap.ch/
|
2 |
+
# Written by Alireza Mohammadshahi <[email protected]>
|
3 |
+
# This is a modified version of https://github.com/huggingface/transformers/blob/main/src/transformers/models/m2m_100/tokenization_m2m_100.py
|
4 |
+
# which owns by Fariseq Authors and The HuggingFace Inc. team.
|
5 |
+
#
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
"""Tokenization classes for SMALL100."""
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
from pathlib import Path
|
22 |
+
from shutil import copyfile
|
23 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
24 |
+
|
25 |
+
import sentencepiece
|
26 |
+
|
27 |
+
from transformers.tokenization_utils import BatchEncoding, PreTrainedTokenizer
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
SPIECE_UNDERLINE = "▁"
|
34 |
+
|
35 |
+
VOCAB_FILES_NAMES = {
|
36 |
+
"vocab_file": "vocab.json",
|
37 |
+
"spm_file": "sentencepiece.bpe.model",
|
38 |
+
"tokenizer_config_file": "tokenizer_config.json",
|
39 |
+
}
|
40 |
+
|
41 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
42 |
+
"vocab_file": {
|
43 |
+
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/vocab.json",
|
44 |
+
},
|
45 |
+
"spm_file": {
|
46 |
+
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/sentencepiece.bpe.model",
|
47 |
+
},
|
48 |
+
"tokenizer_config_file": {
|
49 |
+
"alirezamsh/small100": "https://huggingface.co/alirezamsh/small100/resolve/main/tokenizer_config.json",
|
50 |
+
},
|
51 |
+
}
|
52 |
+
|
53 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
54 |
+
"alirezamsh/small100": 1024,
|
55 |
+
}
|
56 |
+
|
57 |
+
# fmt: off
|
58 |
+
FAIRSEQ_LANGUAGE_CODES = {
|
59 |
+
"m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"]
|
60 |
+
}
|
61 |
+
# fmt: on
|
62 |
+
|
63 |
+
|
64 |
+
class SMALL100Tokenizer(PreTrainedTokenizer):
|
65 |
+
"""
|
66 |
+
Construct an SMALL100 tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
67 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
68 |
+
this superclass for more information regarding those methods.
|
69 |
+
Args:
|
70 |
+
vocab_file (`str`):
|
71 |
+
Path to the vocabulary file.
|
72 |
+
spm_file (`str`):
|
73 |
+
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
|
74 |
+
contains the vocabulary.
|
75 |
+
tgt_lang (`str`, *optional*):
|
76 |
+
A string representing the target language.
|
77 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
78 |
+
The end of sequence token.
|
79 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
80 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
81 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
82 |
+
token of a sequence built with special tokens.
|
83 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
84 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
85 |
+
token instead.
|
86 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
87 |
+
The token used for padding, for example when batching sequences of different lengths.
|
88 |
+
language_codes (`str`, *optional*):
|
89 |
+
What language codes to use. Should be `"m2m100"`.
|
90 |
+
sp_model_kwargs (`dict`, *optional*):
|
91 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
92 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
93 |
+
to set:
|
94 |
+
- `enable_sampling`: Enable subword regularization.
|
95 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
96 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
97 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
98 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
99 |
+
using forward-filtering-and-backward-sampling algorithm.
|
100 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
101 |
+
BPE-dropout.
|
102 |
+
Examples:
|
103 |
+
```python
|
104 |
+
>>> from tokenization_small100 import SMALL100Tokenizer
|
105 |
+
>>> tokenizer = SMALL100Tokenizer.from_pretrained("alirezamsh/small100", tgt_lang="ro")
|
106 |
+
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
|
107 |
+
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
|
108 |
+
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
|
109 |
+
>>> model(**model_inputs) # should work
|
110 |
+
```"""
|
111 |
+
|
112 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
113 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
114 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
115 |
+
model_input_names = ["input_ids", "attention_mask"]
|
116 |
+
|
117 |
+
prefix_tokens: List[int] = []
|
118 |
+
suffix_tokens: List[int] = []
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
vocab_file,
|
123 |
+
spm_file,
|
124 |
+
tgt_lang=None,
|
125 |
+
bos_token="<s>",
|
126 |
+
eos_token="</s>",
|
127 |
+
sep_token="</s>",
|
128 |
+
pad_token="<pad>",
|
129 |
+
unk_token="<unk>",
|
130 |
+
language_codes="m2m100",
|
131 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
132 |
+
num_madeup_words=8,
|
133 |
+
**kwargs,
|
134 |
+
) -> None:
|
135 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
136 |
+
|
137 |
+
self.language_codes = language_codes
|
138 |
+
fairseq_language_code = FAIRSEQ_LANGUAGE_CODES[language_codes]
|
139 |
+
self.lang_code_to_token = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code}
|
140 |
+
|
141 |
+
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", [])
|
142 |
+
kwargs["additional_special_tokens"] += [
|
143 |
+
self.get_lang_token(lang_code)
|
144 |
+
for lang_code in fairseq_language_code
|
145 |
+
if self.get_lang_token(lang_code) not in kwargs["additional_special_tokens"]
|
146 |
+
]
|
147 |
+
|
148 |
+
super().__init__(
|
149 |
+
tgt_lang=tgt_lang,
|
150 |
+
bos_token=bos_token,
|
151 |
+
eos_token=eos_token,
|
152 |
+
sep_token=sep_token,
|
153 |
+
unk_token=unk_token,
|
154 |
+
pad_token=pad_token,
|
155 |
+
language_codes=language_codes,
|
156 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
157 |
+
num_madeup_words=num_madeup_words,
|
158 |
+
**kwargs,
|
159 |
+
)
|
160 |
+
|
161 |
+
self.vocab_file = vocab_file
|
162 |
+
self.encoder = load_json(vocab_file)
|
163 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
164 |
+
self.spm_file = spm_file
|
165 |
+
self.sp_model = load_spm(spm_file, self.sp_model_kwargs)
|
166 |
+
|
167 |
+
self.encoder_size = len(self.encoder)
|
168 |
+
|
169 |
+
self.lang_token_to_id = {
|
170 |
+
self.get_lang_token(lang_code): self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)
|
171 |
+
}
|
172 |
+
self.lang_code_to_id = {lang_code: self.encoder_size + i for i, lang_code in enumerate(fairseq_language_code)}
|
173 |
+
self.id_to_lang_token = {v: k for k, v in self.lang_token_to_id.items()}
|
174 |
+
|
175 |
+
self._tgt_lang = tgt_lang if tgt_lang is not None else "en"
|
176 |
+
self.cur_lang_id = self.get_lang_id(self._tgt_lang)
|
177 |
+
self.set_lang_special_tokens(self._tgt_lang)
|
178 |
+
|
179 |
+
self.num_madeup_words = num_madeup_words
|
180 |
+
|
181 |
+
@property
|
182 |
+
def vocab_size(self) -> int:
|
183 |
+
return len(self.encoder) + len(self.lang_token_to_id) + self.num_madeup_words
|
184 |
+
|
185 |
+
@property
|
186 |
+
def tgt_lang(self) -> str:
|
187 |
+
return self._tgt_lang
|
188 |
+
|
189 |
+
@tgt_lang.setter
|
190 |
+
def tgt_lang(self, new_tgt_lang: str) -> None:
|
191 |
+
self._tgt_lang = new_tgt_lang
|
192 |
+
self.set_lang_special_tokens(self._tgt_lang)
|
193 |
+
|
194 |
+
def _tokenize(self, text: str) -> List[str]:
|
195 |
+
return self.sp_model.encode(text, out_type=str)
|
196 |
+
|
197 |
+
def _convert_token_to_id(self, token):
|
198 |
+
if token in self.lang_token_to_id:
|
199 |
+
return self.lang_token_to_id[token]
|
200 |
+
return self.encoder.get(token, self.encoder[self.unk_token])
|
201 |
+
|
202 |
+
def _convert_id_to_token(self, index: int) -> str:
|
203 |
+
"""Converts an index (integer) in a token (str) using the decoder."""
|
204 |
+
if index in self.id_to_lang_token:
|
205 |
+
return self.id_to_lang_token[index]
|
206 |
+
return self.decoder.get(index, self.unk_token)
|
207 |
+
|
208 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
209 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
210 |
+
return self.sp_model.decode(tokens)
|
211 |
+
|
212 |
+
def get_special_tokens_mask(
|
213 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
214 |
+
) -> List[int]:
|
215 |
+
"""
|
216 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
217 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
218 |
+
Args:
|
219 |
+
token_ids_0 (`List[int]`):
|
220 |
+
List of IDs.
|
221 |
+
token_ids_1 (`List[int]`, *optional*):
|
222 |
+
Optional second list of IDs for sequence pairs.
|
223 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
224 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
225 |
+
Returns:
|
226 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
227 |
+
"""
|
228 |
+
|
229 |
+
if already_has_special_tokens:
|
230 |
+
return super().get_special_tokens_mask(
|
231 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
232 |
+
)
|
233 |
+
|
234 |
+
prefix_ones = [1] * len(self.prefix_tokens)
|
235 |
+
suffix_ones = [1] * len(self.suffix_tokens)
|
236 |
+
if token_ids_1 is None:
|
237 |
+
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
|
238 |
+
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
239 |
+
|
240 |
+
def build_inputs_with_special_tokens(
|
241 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
242 |
+
) -> List[int]:
|
243 |
+
"""
|
244 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
245 |
+
adding special tokens. An MBART sequence has the following format, where `X` represents the sequence:
|
246 |
+
- `input_ids` (for encoder) `X [eos, src_lang_code]`
|
247 |
+
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
|
248 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
249 |
+
separator.
|
250 |
+
Args:
|
251 |
+
token_ids_0 (`List[int]`):
|
252 |
+
List of IDs to which the special tokens will be added.
|
253 |
+
token_ids_1 (`List[int]`, *optional*):
|
254 |
+
Optional second list of IDs for sequence pairs.
|
255 |
+
Returns:
|
256 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
257 |
+
"""
|
258 |
+
if token_ids_1 is None:
|
259 |
+
if self.prefix_tokens is None:
|
260 |
+
return token_ids_0 + self.suffix_tokens
|
261 |
+
else:
|
262 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
263 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
264 |
+
if self.prefix_tokens is None:
|
265 |
+
return token_ids_0 + token_ids_1 + self.suffix_tokens
|
266 |
+
else:
|
267 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
268 |
+
|
269 |
+
def get_vocab(self) -> Dict:
|
270 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
271 |
+
vocab.update(self.added_tokens_encoder)
|
272 |
+
return vocab
|
273 |
+
|
274 |
+
def __getstate__(self) -> Dict:
|
275 |
+
state = self.__dict__.copy()
|
276 |
+
state["sp_model"] = None
|
277 |
+
return state
|
278 |
+
|
279 |
+
def __setstate__(self, d: Dict) -> None:
|
280 |
+
self.__dict__ = d
|
281 |
+
|
282 |
+
# for backward compatibility
|
283 |
+
if not hasattr(self, "sp_model_kwargs"):
|
284 |
+
self.sp_model_kwargs = {}
|
285 |
+
|
286 |
+
self.sp_model = load_spm(self.spm_file, self.sp_model_kwargs)
|
287 |
+
|
288 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
289 |
+
save_dir = Path(save_directory)
|
290 |
+
if not save_dir.is_dir():
|
291 |
+
raise OSError(f"{save_directory} should be a directory")
|
292 |
+
vocab_save_path = save_dir / (
|
293 |
+
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
|
294 |
+
)
|
295 |
+
spm_save_path = save_dir / (
|
296 |
+
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
|
297 |
+
)
|
298 |
+
|
299 |
+
save_json(self.encoder, vocab_save_path)
|
300 |
+
|
301 |
+
if os.path.abspath(self.spm_file) != os.path.abspath(spm_save_path) and os.path.isfile(self.spm_file):
|
302 |
+
copyfile(self.spm_file, spm_save_path)
|
303 |
+
elif not os.path.isfile(self.spm_file):
|
304 |
+
with open(spm_save_path, "wb") as fi:
|
305 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
306 |
+
fi.write(content_spiece_model)
|
307 |
+
|
308 |
+
return (str(vocab_save_path), str(spm_save_path))
|
309 |
+
|
310 |
+
def prepare_seq2seq_batch(
|
311 |
+
self,
|
312 |
+
src_texts: List[str],
|
313 |
+
tgt_texts: Optional[List[str]] = None,
|
314 |
+
tgt_lang: str = "ro",
|
315 |
+
**kwargs,
|
316 |
+
) -> BatchEncoding:
|
317 |
+
self.tgt_lang = tgt_lang
|
318 |
+
self.set_lang_special_tokens(self.tgt_lang)
|
319 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
320 |
+
|
321 |
+
def _build_translation_inputs(self, raw_inputs, tgt_lang: Optional[str], **extra_kwargs):
|
322 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
323 |
+
if tgt_lang is None:
|
324 |
+
raise ValueError("Translation requires a `tgt_lang` for this model")
|
325 |
+
self.tgt_lang = tgt_lang
|
326 |
+
inputs = self(raw_inputs, add_special_tokens=True, **extra_kwargs)
|
327 |
+
return inputs
|
328 |
+
|
329 |
+
def _switch_to_input_mode(self):
|
330 |
+
self.set_lang_special_tokens(self.tgt_lang)
|
331 |
+
|
332 |
+
def _switch_to_target_mode(self):
|
333 |
+
self.prefix_tokens = None
|
334 |
+
self.suffix_tokens = [self.eos_token_id]
|
335 |
+
|
336 |
+
def set_lang_special_tokens(self, src_lang: str) -> None:
|
337 |
+
"""Reset the special tokens to the tgt lang setting. No prefix and suffix=[eos, tgt_lang_code]."""
|
338 |
+
lang_token = self.get_lang_token(src_lang)
|
339 |
+
self.cur_lang_id = self.lang_token_to_id[lang_token]
|
340 |
+
self.prefix_tokens = [self.cur_lang_id]
|
341 |
+
self.suffix_tokens = [self.eos_token_id]
|
342 |
+
|
343 |
+
def get_lang_token(self, lang: str) -> str:
|
344 |
+
return self.lang_code_to_token[lang]
|
345 |
+
|
346 |
+
def get_lang_id(self, lang: str) -> int:
|
347 |
+
lang_token = self.get_lang_token(lang)
|
348 |
+
return self.lang_token_to_id[lang_token]
|
349 |
+
|
350 |
+
|
351 |
+
def load_spm(path: str, sp_model_kwargs: Dict[str, Any]) -> sentencepiece.SentencePieceProcessor:
|
352 |
+
spm = sentencepiece.SentencePieceProcessor(**sp_model_kwargs)
|
353 |
+
spm.Load(str(path))
|
354 |
+
return spm
|
355 |
+
|
356 |
+
|
357 |
+
def load_json(path: str) -> Union[Dict, List]:
|
358 |
+
with open(path, "r") as f:
|
359 |
+
return json.load(f)
|
360 |
+
|
361 |
+
|
362 |
+
def save_json(data, path: str) -> None:
|
363 |
+
with open(path, "w") as f:
|
364 |
+
json.dump(data, f, indent=2)
|