albarpambagio commited on
Commit
93d5f34
1 Parent(s): 1c85ede

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -45
README.md CHANGED
@@ -9,6 +9,12 @@ widget:
9
  model-index:
10
  - name: distilbert-base-indonesian-finetuned-PRDECT-ID
11
  results: []
 
 
 
 
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,59 +22,65 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # distilbert-base-indonesian-finetuned-PRDECT-ID
18
 
19
- This model is a fine-tuned version of [cahya/distilbert-base-indonesian](https://huggingface.co/cahya/distilbert-base-indonesian) on an unknown dataset.
20
- Perplexity: ~31
 
21
 
22
- ## Model description
23
-
24
- More information needed
25
-
26
- ## Intended uses & limitations
27
-
28
- More information needed
29
 
30
  ## Training and evaluation data
31
 
32
- More information needed
 
 
 
33
 
34
- ## Training procedure
35
 
36
  ### Training hyperparameters
37
 
38
  The following hyperparameters were used during training:
39
- - learning_rate: 5e-05
40
- - train_batch_size: 16
41
- - eval_batch_size: 16
42
- - seed: 42
43
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
- - lr_scheduler_type: linear
45
- - lr_scheduler_warmup_steps: 500
46
- - num_epochs: 20
47
-
48
- ### Training results
49
-
50
- | Training Loss | Epoch | Step | Validation Loss |
51
- |:-------------:|:-----:|:----:|:---------------:|
52
- | 0.9507 | 1.0 | 41 | 0.8377 |
53
- | 0.0765 | 2.0 | 82 | 0.0212 |
54
- | 0.0025 | 3.0 | 123 | 0.0020 |
55
- | 0.0013 | 4.0 | 164 | 0.0013 |
56
- | 0.0009 | 5.0 | 205 | 0.0009 |
57
- | 0.0007 | 6.0 | 246 | 0.0007 |
58
- | 0.0005 | 7.0 | 287 | 0.0006 |
59
- | 0.0004 | 8.0 | 328 | 0.0005 |
60
- | 0.0003 | 9.0 | 369 | 0.0004 |
61
- | 0.0002 | 10.0 | 410 | 0.0003 |
62
- | 0.0002 | 11.0 | 451 | 0.0003 |
63
- | 0.0002 | 12.0 | 492 | 0.0003 |
64
- | 0.0002 | 13.0 | 533 | 0.0002 |
65
- | 0.0001 | 14.0 | 574 | 0.0002 |
66
- | 0.0001 | 15.0 | 615 | 0.0002 |
67
- | 0.0001 | 16.0 | 656 | 0.0002 |
68
- | 0.0001 | 17.0 | 697 | 0.0002 |
69
- | 0.0001 | 18.0 | 738 | 0.0002 |
70
- | 0.0001 | 19.0 | 779 | 0.0002 |
71
- | 0.0001 | 20.0 | 820 | 0.0002 |
 
 
 
 
 
 
 
 
 
 
72
 
73
 
74
  ### Framework versions
@@ -76,4 +88,4 @@ The following hyperparameters were used during training:
76
  - Transformers 4.41.2
77
  - Pytorch 2.1.2
78
  - Datasets 2.19.2
79
- - Tokenizers 0.19.1
 
9
  model-index:
10
  - name: distilbert-base-indonesian-finetuned-PRDECT-ID
11
  results: []
12
+ datasets:
13
+ - SEACrowd/prdect_id
14
+ language:
15
+ - id
16
+ metrics:
17
+ - perplexity
18
  ---
19
 
20
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
22
 
23
  # distilbert-base-indonesian-finetuned-PRDECT-ID
24
 
25
+ This model is a fine-tuned version of [cahya/distilbert-base-indonesian](https://huggingface.co/cahya/distilbert-base-indonesian) on
26
+ [The PRDECT-ID Dataset] (https://www.kaggle.com/datasets/jocelyndumlao/prdect-id-indonesian-emotion-classification), it is a compilation of Indonesian product reviews that come with emotion and sentiment labels.
27
+ These reviews were gathered from one of Indonesia's largest e-commerce platforms, Tokopedia.
28
 
 
 
 
 
 
 
 
29
 
30
  ## Training and evaluation data
31
 
32
+ I split my dataframe `df` into training, validation, and testing sets (`train_df`, `val_df`, `test_df`)
33
+ using the `train_test_split` function from `sklearn.model_selection`.
34
+ I set the test size to 20% for the initial split and further divided the remaining data equally between validation and testing sets.
35
+ This process ensures that each split (`val_df` and `test_df`) maintains the same class distribution as the original dataset (`stratify=df['label']`).
36
 
 
37
 
38
  ### Training hyperparameters
39
 
40
  The following hyperparameters were used during training:
41
+ - num_train_epochs: 5
42
+ - per_device_train_batch_size: 16
43
+ - per_device_eval_batch_size: 16
44
+ - warmup_steps: 500
45
+ - weight_decay: 0.01
46
+ - logging_dir: ./logs
47
+ - logging_steps: 10
48
+ - eval_strategy: epoch
49
+ - save_strategy: epoch
50
+
51
+ ### Training and Evaluation Results
52
+
53
+ The following table summarizes the training and validation loss over the epochs:
54
+
55
+ | Epoch | Training Loss | Validation Loss |
56
+ |-------|----------------|-----------------|
57
+ | 1 | 0.000100 | 0.000062 |
58
+ | 2 | 0.000000 | 0.000038 |
59
+ | 3 | 0.000000 | 0.000025 |
60
+ | 4 | 0.000000 | 0.000017 |
61
+ | 5 | 0.000000 | 0.000014 |
62
+
63
+ Train output:
64
+ - global_step: 235
65
+ - training_loss: 3.9409913424219185e-05
66
+ - train_runtime: 44.6774
67
+ - train_samples_per_second: 83.04
68
+ - train_steps_per_second: 5.26
69
+ - total_flos: 122954683514880.0
70
+ - train_loss: 3.9409913424219185e-05
71
+ - epoch: 5.0
72
+
73
+ Evaluation:
74
+ - eval_loss: 1.3968576240586117e-05
75
+ - eval_runtime: 0.3321
76
+ - eval_samples_per_second: 270.973
77
+ - eval_steps_per_second: 18.065
78
+ - epoch: 5.0
79
+
80
+ Perplexity: 1.0000139686738017
81
+
82
+ These results indicate excellent model performance and generalization capabilities.
83
+
84
 
85
 
86
  ### Framework versions
 
88
  - Transformers 4.41.2
89
  - Pytorch 2.1.2
90
  - Datasets 2.19.2
91
+ - Tokenizers 0.19.1